江西省南昌市安義中學2025屆高考臨考沖刺數(shù)學試卷含解析_第1頁
江西省南昌市安義中學2025屆高考臨考沖刺數(shù)學試卷含解析_第2頁
江西省南昌市安義中學2025屆高考臨考沖刺數(shù)學試卷含解析_第3頁
江西省南昌市安義中學2025屆高考臨考沖刺數(shù)學試卷含解析_第4頁
江西省南昌市安義中學2025屆高考臨考沖刺數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省南昌市安義中學2025屆高考臨考沖刺數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則的值域為()A. B. C. D.2.已知的展開式中第項與第項的二項式系數(shù)相等,則奇數(shù)項的二項式系數(shù)和為().A. B. C. D.3.一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則這個幾何體的體積為()A. B. C. D.4.如圖是國家統(tǒng)計局于2020年1月9日發(fā)布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比)根據(jù)該折線圖,下列結(jié)論錯誤的是()A.2019年12月份,全國居民消費價格環(huán)比持平B.2018年12月至2019年12月全國居民消費價格環(huán)比均上漲C.2018年12月至2019年12月全國居民消費價格同比均上漲D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格5.已知是邊長為1的等邊三角形,點,分別是邊,的中點,連接并延長到點,使得,則的值為()A. B. C. D.6.已知,則()A. B. C. D.7.已知直線:()與拋物線:交于(坐標原點),兩點,直線:與拋物線交于,兩點.若,則實數(shù)的值為()A. B. C. D.8.平行四邊形中,已知,,點、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.9.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.10.某個命題與自然數(shù)有關(guān),且已證得“假設(shè)時該命題成立,則時該命題也成立”.現(xiàn)已知當時,該命題不成立,那么()A.當時,該命題不成立 B.當時,該命題成立C.當時,該命題不成立 D.當時,該命題成立11.已知函數(shù)是上的減函數(shù),當最小時,若函數(shù)恰有兩個零點,則實數(shù)的取值范圍是()A. B.C. D.12.設(shè)是虛數(shù)單位,復(fù)數(shù)()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一個空間幾何體的三視圖及部分數(shù)據(jù)如圖所示,則這個幾何體的體積是___________14.安排名男生和名女生參與完成項工作,每人參與一項,每項工作至少由名男生和名女生完成,則不同的安排方式共有________種(用數(shù)字作答).15.若變量,滿足約束條件則的最大值為________.16.關(guān)于函數(shù)有下列四個命題:①函數(shù)在上是增函數(shù);②函數(shù)的圖象關(guān)于中心對稱;③不存在斜率小于且與函數(shù)的圖象相切的直線;④函數(shù)的導(dǎo)函數(shù)不存在極小值.其中正確的命題有______.(寫出所有正確命題的序號)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線過橢圓的右焦點,且交橢圓于A,B兩點,線段AB的中點是,(1)求橢圓的方程;(2)過原點的直線l與線段AB相交(不含端點)且交橢圓于C,D兩點,求四邊形面積的最大值.18.(12分)的內(nèi)角所對的邊分別是,且,.(1)求;(2)若邊上的中線,求的面積.19.(12分)記為數(shù)列的前項和,N.(1)求;(2)令,證明數(shù)列是等比數(shù)列,并求其前項和.20.(12分)某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗1000人的血樣進行化驗,由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個人的血分別化驗,這時需要驗1000次.方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結(jié)果呈陰性,這個人的血只需檢驗一次(這時認為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這樣,該組個人的血總共需要化驗次.假設(shè)此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應(yīng)相互獨立.(1)設(shè)方案②中,某組個人的每個人的血化驗次數(shù)為,求的分布列;(2)設(shè),試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))21.(12分)已知,,.(1)求的最小值;(2)若對任意,都有,求實數(shù)的取值范圍.22.(10分)已知函數(shù)(I)當時,解不等式.(II)若不等式恒成立,求實數(shù)的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

先求出集合,化簡=,令,得由二次函數(shù)的性質(zhì)即可得值域.【詳解】由,得,,令,,,所以得,在上遞增,在上遞減,,所以,即的值域為故選A【點睛】本題考查了二次不等式的解法、二次函數(shù)最值的求法,換元法要注意新變量的范圍,屬于中檔題2、D【解析】因為的展開式中第4項與第8項的二項式系數(shù)相等,所以,解得,所以二項式中奇數(shù)項的二項式系數(shù)和為.考點:二項式系數(shù),二項式系數(shù)和.3、C【解析】

由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【詳解】由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.【點睛】本題考查的知識點是由三視圖求幾何體的體積,解決本題的關(guān)鍵是得到該幾何體的形狀.4、D【解析】

先對圖表數(shù)據(jù)的分析處理,再結(jié)簡單的合情推理一一檢驗即可【詳解】由折線圖易知A、C正確;2019年3月份及6月份的全國居民消費價格環(huán)比是負的,所以B錯誤;設(shè)2018年12月份,2018年11月份,2017年12月份的全國居民消費價格分別為,由題意可知,,,則有,所以D正確.故選:D【點睛】此題考查了對圖表數(shù)據(jù)的分析處理能力及進行簡單的合情推理,屬于中檔題.5、D【解析】

設(shè),,作為一個基底,表示向量,,,然后再用數(shù)量積公式求解.【詳解】設(shè),,所以,,,所以.故選:D【點睛】本題主要考查平面向量的基本運算,還考查了運算求解的能力,屬于基礎(chǔ)題.6、D【解析】

根據(jù)指數(shù)函數(shù)的單調(diào)性,即當?shù)讛?shù)大于1時單調(diào)遞增,當?shù)讛?shù)大于零小于1時單調(diào)遞減,對選項逐一驗證即可得到正確答案.【詳解】因為,所以,所以是減函數(shù),又因為,所以,,所以,,所以A,B兩項均錯;又,所以,所以C錯;對于D,,所以,故選D.【點睛】這個題目考查的是應(yīng)用不等式的性質(zhì)和指對函數(shù)的單調(diào)性比較大小,兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關(guān)系,有時可以代入一些特殊的數(shù)據(jù)得到具體值,進而得到大小關(guān)系.7、D【解析】

設(shè),,聯(lián)立直線與拋物線方程,消去、列出韋達定理,再由直線與拋物線的交點求出點坐標,最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設(shè),,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點睛】本題考查直線與拋物線的綜合應(yīng)用,弦長公式的應(yīng)用,屬于中檔題.8、C【解析】

將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點睛】本題考查向量的幾何意義,考查向量的線性運算,將用向量和表示是關(guān)鍵,是基礎(chǔ)題.9、C【解析】

利用圓心到漸近線的距離等于半徑即可建立間的關(guān)系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點睛】本題考查雙曲線離心率的求法,求雙曲線離心率問題,關(guān)鍵是建立三者間的方程或不等關(guān)系,本題是一道基礎(chǔ)題.10、C【解析】

寫出命題“假設(shè)時該命題成立,則時該命題也成立”的逆否命題,結(jié)合原命題與逆否命題的真假性一致進行判斷.【詳解】由逆否命題可知,命題“假設(shè)時該命題成立,則時該命題也成立”的逆否命題為“假設(shè)當時該命題不成立,則當時該命題也不成立”,由于當時,該命題不成立,則當時,該命題也不成立,故選:C.【點睛】本題考查逆否命題與原命題等價性的應(yīng)用,解題時要寫出原命題的逆否命題,結(jié)合逆否命題的等價性進行判斷,考查邏輯推理能力,屬于中等題.11、A【解析】

首先根據(jù)為上的減函數(shù),列出不等式組,求得,所以當最小時,,之后將函數(shù)零點個數(shù)轉(zhuǎn)化為函數(shù)圖象與直線交點的個數(shù)問題,畫出圖形,數(shù)形結(jié)合得到結(jié)果.【詳解】由于為上的減函數(shù),則有,可得,所以當最小時,,函數(shù)恰有兩個零點等價于方程有兩個實根,等價于函數(shù)與的圖像有兩個交點.畫出函數(shù)的簡圖如下,而函數(shù)恒過定點,數(shù)形結(jié)合可得的取值范圍為.故選:A.【點睛】該題考查的是有關(guān)函數(shù)的問題,涉及到的知識點有分段函數(shù)在定義域上單調(diào)減求參數(shù)的取值范圍,根據(jù)函數(shù)零點個數(shù)求參數(shù)的取值范圍,數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題目.12、D【解析】

利用復(fù)數(shù)的除法運算,化簡復(fù)數(shù),即可求解,得到答案.【詳解】由題意,復(fù)數(shù),故選D.【點睛】本題主要考查了復(fù)數(shù)的除法運算,其中解答中熟記復(fù)數(shù)的除法運算法則是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先還原幾何體,再根據(jù)柱體體積公式求解【詳解】空間幾何體為一個棱柱,如圖,底面為邊長為的直角三角形,高為的棱柱,所以體積為【點睛】本題考查三視圖以及柱體體積公式,考查基本分析求解能力,屬基礎(chǔ)題14、1296【解析】

先從4個男生選2個一組,將4人分成三組,然后從4個女生選2個一組,將4人分成三組,然后全排列即可.【詳解】由于每項工作至少由名男生和名女生完成,則先從4個男生選2個一組,將4人分成三組,所以男生的排法共有,同理女生的排法共有,故不同的安排共有種.故答案為:1296【點睛】本題主要考查了排列組合的應(yīng)用,考查了學生應(yīng)用數(shù)學解決實際問題的能力.15、7【解析】

畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合,即可容易求得目標函數(shù)的最大值.【詳解】作出不等式組所表示的平面區(qū)域,如下圖陰影部分所示.觀察可知,當直線過點時,有最大值,.故答案為:.【點睛】本題考查二次不等式組與平面區(qū)域、線性規(guī)劃,主要考查推理論證能力以及數(shù)形結(jié)合思想,屬基礎(chǔ)題.16、①②③【解析】

由單調(diào)性、對稱性概念、導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)與極值的關(guān)系進行判斷.【詳解】函數(shù)的定義域是,由于,在上遞增,∴函數(shù)在上是遞增,①正確;,∴函數(shù)的圖象關(guān)于中心對稱,②正確;,時取等號,∴③正確;,設(shè),則,顯然是即的極小值點,④錯誤.故答案為:①②③.【點睛】本題考查函數(shù)的單調(diào)性、對稱性,考查導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)與極值,解題時按照相關(guān)概念判斷即可,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)由直線可得橢圓右焦點的坐標為,由中點可得,且由斜率公式可得,由點在橢圓上,則,二者作差,進而代入整理可得,即可求解;(2)設(shè)直線,點到直線的距離為,則四邊形的面積為,將代入橢圓方程,再利用弦長公式求得,利用點到直線距離求得,根據(jù)直線l與線段AB(不含端點)相交,可得,即,進而整理換元,由二次函數(shù)性質(zhì)求解最值即可.【詳解】(1)直線與x軸交于點,所以橢圓右焦點的坐標為,故,因為線段AB的中點是,設(shè),則,且,又,作差可得,則,得又,所以,因此橢圓的方程為.(2)由(1)聯(lián)立,解得或,不妨令,易知直線l的斜率存在,設(shè)直線,代入,得,解得或,設(shè),則,則,因為到直線的距離分別是,由于直線l與線段AB(不含端點)相交,所以,即,所以,四邊形的面積,令,,則,所以,當,即時,,因此四邊形面積的最大值為.【點睛】本題考查求橢圓的標準方程,考查橢圓中的四邊形面積問題,考查直線與橢圓的位置關(guān)系的應(yīng)用,考查運算能力.18、(1),(2)【解析】

(1)先由正弦定理,得到,進而可得,再由,即可得出結(jié)果;(2)先由余弦定理得,,再根據(jù)題中數(shù)據(jù),可得,從而可求出,得到,進而可求出結(jié)果.【詳解】(1)由正弦定理得,所以,因為,所以,即,所以,又因為,所以,.(2)在和中,由余弦定理得,.因為,,,,又因為,即,所以,所以,又因為,所以.所以的面積.【點睛】本題主要考查解三角形,靈活運用正弦定理和余弦定理即可,屬于常考題型.19、(1);(2)證明見詳解,【解析】

(1)根據(jù),可得,然后作差,可得結(jié)果.(2)根據(jù)(1)的結(jié)論,用取代,得到新的式子,然后作差,可得結(jié)果,最后根據(jù)等比數(shù)列的前項和公式,可得結(jié)果.【詳解】(1)由①,則②②-①可得:所以(2)由(1)可知:③則④④-③可得:則,且令,則,所以數(shù)列是首項為,公比為的等比數(shù)列所以【點睛】本題主要考查遞推公式以及之間的關(guān)系的應(yīng)用,考驗觀察能力以及分析能力,屬中檔題.20、(1)分布列見解析;(2)406.【解析】

(1)計算個人的血混合后呈陰性反應(yīng)的概率為,呈陽性反應(yīng)的概率為,得到分布列.(2)計算,代入數(shù)據(jù)計算比較大小得到答案.【詳解】(1)設(shè)每個人的血呈陰性反應(yīng)的概率為,則.所以個人的血混合后呈陰性反應(yīng)的概率為,呈陽性反應(yīng)的概率為.依題意可知,,所以的分布列為:(2)方案②中.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論