廣西部分重點中學2025屆高三沖刺模擬數學試卷含解析_第1頁
廣西部分重點中學2025屆高三沖刺模擬數學試卷含解析_第2頁
廣西部分重點中學2025屆高三沖刺模擬數學試卷含解析_第3頁
廣西部分重點中學2025屆高三沖刺模擬數學試卷含解析_第4頁
廣西部分重點中學2025屆高三沖刺模擬數學試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣西部分重點中學2025屆高三沖刺模擬數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的大致圖象是A. B. C. D.2.數列滿足,且,,則()A. B.9 C. D.73.在中,內角A,B,C所對的邊分別為a,b,c,且.若,的面積為,則()A.5 B. C.4 D.164.設,滿足,則的取值范圍是()A. B. C. D.5.年初,湖北出現由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應,全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數,則下列中表述錯誤的是()A.月下旬新增確診人數呈波動下降趨勢B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數超過確診人數C.月日至月日新增確診人數波動最大D.我國新型冠狀病毒肺炎累計確診人數在月日左右達到峰值6.《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請歸但求穿墻術.得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術”:,,,,則按照以上規(guī)律,若具有“穿墻術”,則()A.48 B.63 C.99 D.1207.設變量滿足約束條件,則目標函數的最大值是()A.7 B.5 C.3 D.28.設是虛數單位,若復數,則()A. B. C. D.9.在直角坐標平面上,點的坐標滿足方程,點的坐標滿足方程則的取值范圍是()A. B. C. D.10.秦九韶是我國南宋時期的數學家,普州(現四川省安岳縣)人,他在所著的《數書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入的值為2,則輸出的值為A. B. C. D.11.中國古代數學著作《算法統(tǒng)宗》中有這樣一個問題;“三百七十八里關,初行健步不為難,次后腳痛遞減半,六朝才得到其關,要見每朝行里數,請公仔細算相還.”其意思為:“有一個人走了378里路,第一天健步走行,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達目的地,求該人每天走的路程.”由這個描述請算出這人第四天走的路程為()A.6里 B.12里 C.24里 D.48里12.已知函數的最小正周期為的圖象向左平移個單位長度后關于軸對稱,則的單調遞增區(qū)間為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為,斜率為2的直線與的交點為,若,則直線的方程為___________.14.已知圓,直線與圓交于兩點,,若,則弦的長度的最大值為___________.15.如圖,直線是曲線在處的切線,則________.16.某種賭博每局的規(guī)則是:賭客先在標記有1,2,3,4,5的卡片中隨機摸取一張,將卡片上的數字作為其賭金;隨后放回該卡片,再隨機摸取兩張,將這兩張卡片上數字之差的絕對值的1.4倍作為其獎金.若隨機變量ξ1和ξ2分別表示賭客在一局賭博中的賭金和獎金,則D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面,底面是直角梯形,為側棱上一點,已知.(Ⅰ)證明:平面平面;(Ⅱ)求二面角的余弦值.18.(12分)[選修4-5:不等式選講]:已知函數.(1)當時,求不等式的解集;(2)設,,且的最小值為.若,求的最小值.19.(12分)如圖1,在邊長為4的正方形中,是的中點,是的中點,現將三角形沿翻折成如圖2所示的五棱錐.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.20.(12分)已知數列是公比為正數的等比數列,其前項和為,滿足,且成等差數列.(1)求的通項公式;(2)若數列滿足,求的值.21.(12分)如圖,四棱錐的底面ABCD是正方形,為等邊三角形,M,N分別是AB,AD的中點,且平面平面ABCD.(1)證明:平面PNB;(2)問棱PA上是否存在一點E,使平面DEM,求的值22.(10分)已知頂點是坐標原點的拋物線的焦點在軸正半軸上,圓心在直線上的圓與軸相切,且關于點對稱.(1)求和的標準方程;(2)過點的直線與交于,與交于,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

利用函數的對稱性及函數值的符號即可作出判斷.【詳解】由題意可知函數為奇函數,可排除B選項;當時,,可排除D選項;當時,,當時,,即,可排除C選項,故選:A【點睛】本題考查了函數圖象的判斷,函數對稱性的應用,屬于中檔題.2、A【解析】

先由題意可得數列為等差數列,再根據,,可求出公差,即可求出.【詳解】數列滿足,則數列為等差數列,,,,,,,故選:.【點睛】本題主要考查了等差數列的性質和通項公式的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.3、C【解析】

根據正弦定理邊化角以及三角函數公式可得,再根據面積公式可求得,再代入余弦定理求解即可.【詳解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故選:C【點睛】本題主要考查了解三角形中正余弦定理與面積公式的運用,屬于中檔題.4、C【解析】

首先繪制出可行域,再繪制出目標函數,根據可行域范圍求出目標函數中的取值范圍.【詳解】由題知,滿足,可行域如下圖所示,可知目標函數在點處取得最小值,故目標函數的最小值為,故的取值范圍是.故選:D.【點睛】本題主要考查了線性規(guī)劃中目標函數的取值范圍的問題,屬于基礎題.5、D【解析】

根據新增確診曲線的走勢可判斷A選項的正誤;根據新增確診曲線與新增治愈曲線的位置關系可判斷B選項的正誤;根據月日至月日新增確診曲線的走勢可判斷C選項的正誤;根據新增確診人數的變化可判斷D選項的正誤.綜合可得出結論.【詳解】對于A選項,由圖象可知,月下旬新增確診人數呈波動下降趨勢,A選項正確;對于B選項,由圖象可知,隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數超過確診人數,B選項正確;對于C選項,由圖象可知,月日至月日新增確診人數波動最大,C選項正確;對于D選項,在月日及以前,我國新型冠狀病毒肺炎新增確診人數大于新增治愈人數,我國新型冠狀病毒肺炎累計確診人數不在月日左右達到峰值,D選項錯誤.故選:D.【點睛】本題考查統(tǒng)計圖表的應用,考查數據處理能力,屬于基礎題.6、C【解析】

觀察規(guī)律得根號內分母為分子的平方減1,從而求出n.【詳解】解:觀察各式發(fā)現規(guī)律,根號內分母為分子的平方減1所以故選:C.【點睛】本題考查了歸納推理,發(fā)現總結各式規(guī)律是關鍵,屬于基礎題.7、B【解析】

由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優(yōu)解,聯立方程組求得最優(yōu)解的坐標,把最優(yōu)解的坐標代入目標函數得結論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當直經過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標函數的最值,屬于簡單題.求目標函數最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數對應的最優(yōu)解對應點(在可行域內平移變形后的目標函數,最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數求出最值.8、A【解析】

結合復數的除法運算和模長公式求解即可【詳解】∵復數,∴,,則,故選:A.【點睛】本題考查復數的除法、模長、平方運算,屬于基礎題9、B【解析】

由點的坐標滿足方程,可得在圓上,由坐標滿足方程,可得在圓上,則求出兩圓內公切線的斜率,利用數形結合可得結果.【詳解】點的坐標滿足方程,在圓上,在坐標滿足方程,在圓上,則作出兩圓的圖象如圖,設兩圓內公切線為與,由圖可知,設兩圓內公切線方程為,則,圓心在內公切線兩側,,可得,,化為,,即,,的取值范圍,故選B.【點睛】本題主要考查直線的斜率、直線與圓的位置關系以及數形結合思想的應用,屬于綜合題.數形結合是根據數量與圖形之間的對應關系,通過數與形的相互轉化來解決數學問題的一種重要思想方法,尤其在解決選擇題、填空題時發(fā)揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關鍵是運用這種方法的關鍵是正確作出曲線圖象,充分利用數形結合的思想方法能夠使問題化難為簡,并迎刃而解.10、C【解析】

由題意,模擬程序的運行,依次寫出每次循環(huán)得到的,的值,當時,不滿足條件,跳出循環(huán),輸出的值.【詳解】解:初始值,,程序運行過程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循環(huán),輸出的值為其中①②①—②得.故選:.【點睛】本題主要考查了循環(huán)結構的程序框圖的應用,正確依次寫出每次循環(huán)得到,的值是解題的關鍵,屬于基礎題.11、C【解析】

設第一天走里,則是以為首項,以為公比的等比數列,由題意得,求出(里,由此能求出該人第四天走的路程.【詳解】設第一天走里,則是以為首項,以為公比的等比數列,由題意得:,解得(里,(里.故選:C.【點睛】本題考查等比數列的某一項的求法,考查等比數列等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數與方程思想,是基礎題.12、D【解析】

先由函數的周期和圖象的平移后的函數的圖象性質得出函數的解析式,從而得出的解析式,再根據正弦函數的單調遞增區(qū)間得出函數的單調遞增區(qū)間,可得選項.【詳解】因為函數的最小正周期是,所以,即,所以,的圖象向左平移個單位長度后得到的函數解析式為,由于其圖象關于軸對稱,所以,又,所以,所以,所以,因為的遞增區(qū)間是:,,由,,得:,,所以函數的單調遞增區(qū)間為().故選:D.【點睛】本題主要考查正弦型函數的周期性,對稱性,單調性,圖象的平移,在進行圖象的平移時,注意自變量的系數,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設直線l的方程為,,聯立直線l與拋物線C的方程,得到A,B點橫坐標的關系式,代入到中,解出t的值,即可求得直線l的方程【詳解】設直線.由題設得,故,由題設可得.

由可得,

則,從而,得,所以l的方程為,故答案為:【點睛】本題主要考查了直線的方程,拋物線的定義,拋物線的簡單幾何性質,直線與拋物線的位置關系,屬于中檔題.14、【解析】

取的中點為M,由可得,可得M在上,當最小時,弦的長才最大.【詳解】設為的中點,,即,即,,.設,則,得.所以,.故答案為:【點睛】本題考查直線與圓的位置關系的綜合應用,考查學生的邏輯推理、數形結合的思想,是一道有一定難度的題.15、.【解析】

求出切線的斜率,即可求出結論.【詳解】由圖可知直線過點,可求出直線的斜率,由導數的幾何意義可知,.故答案為:.【點睛】本題考查導數與曲線的切線的幾何意義,屬于基礎題.16、20.2【解析】

分別求出隨機變量ξ1和ξ2的分布列,根據期望和方差公式計算得解.【詳解】設a,b∈{1,2,1,4,5},則p(ξ1=a),其ξ1分布列為:ξ112145PE(ξ1)(1+2+1+4+5)=1.D(ξ1)[(1﹣1)2+(2﹣1)2+(1﹣1)2+(4﹣1)2+(5﹣1)2]=2.ξ2=1.4|a﹣b|的可能取值分別為:1.4,2.3,4.2,5.6,P(ξ2=1.4),P(ξ2=2.3),P(ξ2=4.2),P(ξ2=5.6),可得分布列.ξ21.42.34.25.6PE(ξ2)=1.42.34.25.62.3.∴E(ξ1)﹣E(ξ2)=0.2.故答案為:2,0.2.【點睛】此題考查隨機變量及其分布,關鍵在于準確求出隨機變量取值的概率,根據公式準確計算期望和方差.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)證明見解析;(Ⅱ).【解析】

(Ⅰ)先證明

,再證明平面,利用面面垂直的判定定理,即可求證所求證;(Ⅱ)根據題意以為軸、軸、軸建立空間直角坐標系,求出平面和平面的向量,利用公式即可求解.【詳解】(Ⅰ)證:由已知得又平面,平面,,而故,平面平面,平面平面(Ⅱ)由(Ⅰ)知,推理知梯形中,,,有,又,故所以相似,故有,即所以,以為軸、軸、軸建立如圖所示的空間直角坐標系,則,,,設平面的法向量為,則令,則,是平面的一個法向量設平面的一個法向量為令,則是平面的一個法向量=又二面角為鈍二面角,其余弦值為.【點睛】本題考查線面、面面垂直的判定定理與性質定理,考查向量法求二面角的余弦值,考查直觀想象能力與運算求解能力,屬于中檔題.18、(1)(2)【解析】

(1)當時,,原不等式可化為,分類討論即可求得不等式的解集;(2)由題意得,的最小值為,所以,由,得,利用基本不等式即可求解其最小值.【詳解】(1)當時,,原不等式可化為,①當時,不等式①可化為,解得,此時;當時,不等式①可化為,解得,此時;當時,不等式①可化為,解得,此時,綜上,原不等式的解集為.(2)由題意得,,因為的最小值為,所以,由,得,所以,當且僅當,即,時,的最小值為.【點睛】本題主要考查了絕對值不等式問題,對于含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數形結合思想,將絕對值不等式與函數以及不等式恒成立交匯、滲透,解題時強化函數、數形結合與轉化化歸思想方法的靈活應用,這是命題的新動向.19、(1)證明見解析;(2).【解析】

(1)利用線面平行的定義證明即可(2)取的中點,并分別連接,,然后,證明相應的線面垂直關系,分別以,,為軸,軸,軸建立空間直角坐標系,利用坐標運算進行求解即可【詳解】證明:(1)在圖1中,連接.又,分別為,中點,所以.即圖2中有.又平面,平面,所以平面.解:(2)在圖2中,取的中點,并分別連接,.分析知,,.又平面平面,平面平面,平面,所以平面.又,所以,,.分別以,,為軸,軸,軸建立如圖所示的空間直角坐標系,則,,,,,所以,,.設平面的一個法向量,則,取,則,,所以.又,所以.分析知,直線與平面所成角的正弦值為.【點睛】本題考查線面平行的證明以及利用空間向量求解線面角問題,屬于基礎題20、(1)(2)【解析】

(1)由公比表示出,由成等差數列可求得,從而數列的通項公式;(2)求(1)得,然后對和式兩兩并項后利用等差數列的前項和公式可求解.【詳解】(1)∵是等比數列,且成等差數列∴,即∴,解得:或∵,∴∵∴(2)∵∴【點睛】本題考查等比數列的通項公式,考查并項求和法及等差數列的項和公式.本題求數列通項公式所用方法為基本量法,求和是用并項求和法.數列的求和除公式法外,還有錯位相關法、裂項相消法、分組(并項)求和法等等.21、(1)證明見解析;(2)存在,.【解析】

(1)根據題意證出,,再由線面垂直的判定定理即可證出.(2)連接AC交DM于點Q,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論