版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
謝康光電信息學(xué)院微波光電子學(xué)
在當(dāng)代社會和經(jīng)濟發(fā)展中,信息容量與日俱增,隨著高容量和高速度信息的發(fā)展,電子學(xué)和微電子學(xué)遇到了一定的困難。光頻在1014—1015Hz,而且激光束的頻寬可窄至103Hz,因而光纖能承載傳送大量的信息。在許多領(lǐng)域中,凡涉及到超大、超精、超微、超功率、超高速及復(fù)雜圖像的有關(guān)應(yīng)用中都常常要求助于光電子技術(shù)。 一方面,隨著頻率升高和帶寬加大,調(diào)制、探測過程中信號頻率已進(jìn)入微波頻率范疇,不得不采用微波技術(shù)來處理光學(xué)問題;另一方面,光電子技術(shù)的發(fā)展使人們可以采用最新的光學(xué)技術(shù)從本質(zhì)上改進(jìn)系統(tǒng)結(jié)構(gòu),處理微波信號的傳輸與控制。因此研究微波與光波的相互作用十分必要。由于集成光學(xué)和微波集成電路的發(fā)展,以及兩者在半導(dǎo)體材料和工藝方面的兼容性,使得原來各自獨立發(fā)展的光波和微波兩門學(xué)科開始緊密結(jié)合,隨著這兩個領(lǐng)域的交融,一門新興學(xué)科微波光電子學(xué)應(yīng)運而生。微波光電子學(xué)研究光波與微波的相互作用,主要包括光的微波調(diào)制,外差光生微波源,微波信號的探測,微波器件的光學(xué)控制等領(lǐng)域的機理和技術(shù)。微波光電子學(xué)的主要應(yīng)用領(lǐng)域包括光信息處理,微波的光載傳輸,相控陣天線波束光學(xué)實時延遲控制及波束合成。光對微波信號產(chǎn)生、放大與交換的調(diào)控作用,主要是利用光對微波半導(dǎo)體器件有源層中載流子濃度和運動的激發(fā)與控制;微波對光傳輸、折射偏振及信號傳遞的調(diào)控作用則利用導(dǎo)光媒質(zhì)的極化與載流子分布受微波場變化而導(dǎo)致光導(dǎo)率、折射與偏振特性的改變。微波光電子學(xué)早期工作Opticalsourcescapableoffastmodulation;Suitabletransmissionmedia;Fastopticaldetectors;Thedevelopmentofthefirstlasers,includingin1960boththepulsedrubylaseratHughesResearchLaboratoriesandthecontinuouslyoperatingheliumneonlaseratBellLaboratories,canbesaidtohavestartedtheopticalcommunicationsera.Theimportantissueofhowtomodulatetheoutputofthesesourcesathighratesbecamethesubjectofintenseactivity.Electroopticmodulatorsachievedfrequenciesashighas11GHzbytheearly1970s.Opticalsourcescapableoffastmodulation;Greatercompactnesswasofferedbythesemiconductorlaser,andwiththedevelopmentofdoubleheterostructuredevicescapableofroom-temperaturecontinuousoperationin1970,thisbecamethepreferredsourceforopticalcommunication.Afurtheradvantageofthesemiconductorlaserwasitscapabilityfordirectmodulationviatheinjectedcurrent,andmicrowavebandwidthsweresoonrealized.Earlyplanswerebasedonfree-spaceopticsandgaslenses.Followingrealizationoflow-losstransmissioninsilicaopticalfiber,thisrapidlybecamethepreferredtransmissionmedium.Multimodefiberoperatingatawavelengthof850nm
single-modefiber,lowerdispersionat1300nmandlowlossat1550nm.2.Suitabletransmissionmedia;Fordetection,fastdepletionandavalanchedetectorsweredevelopedatanearlystageandsubsequentlydevelopedtogiveusefulmicrowavebandwidthresponse.3.Fastopticaldetectors微波光電子學(xué)的主要技術(shù)A.SourceTechnologies
DirectlyModulatedSemiconductorLasers:
ExternalModulators:
HeterodyneSources:
B.DetectionTechnologiesPhotodetectors:
OpticalControlofMicrowaveDevices:
DirectlyModulatedSemiconductorLasers:主要優(yōu)點:simplicity最近進(jìn)展:reducingelectricalparasiticsoflaserstructures;optimizinglaserparametersforhigh-speedoperation.Limitationstohigh-speedoperationofsemiconductorlaserscanbecategorizedintwogroupsConsiderationsotherthantheactivelayercanbecollectedinonegroup,including:thedesignoftheopticalcavity,reductionoftheparasitics,efficientremovaloftheexcessheat.Intrinsicpropertiesoftheactivelayer,whichpresenttheultimatelimitonthespeedofoperationandhasledtoutilizationofquantumwells(QW’s).Usingrateequations,small-signalmodulationresponseofadirectlymodulatedsemiconductorlasercanbeexpressedaswhereAisanamplitudefactor,
istheangularmodulationfrequency,
pistheangularrelaxationresonancefrequency,and
isthedampingfactor.Thedampingfactorandresonancefrequencyarerelated:
=K
p2+
0Fromlowtohighfrequencies,theresponsestartsoutflat,sharplypeaksaround
p,anddropsratherfastforfrequenciesextendingbeyond
p.Theamountofpeakingdependsontherelativemagnitudeof
.As
pincreases,sodoes
,andtheresponseflattensoutduetoexcessivedamping.Small-signalCWmodulationresponseofalaseratvariousbiascurrents(10,20,40,60,80,and100mA)Modulationbandwidthislimitedbythephoton–electronresonancefrequency
p,abovewhichtheundampeddetectedelectricalresponsefallsas1/4.pcanbeapproximatedbyFasterresponserequireshigh
p:reducingthephotonlifetime
p
shortopticalcavity,reducedfacetreflectivityincreasingthedifferentialgaing0
reduceddimensionalityincreasingthephotondensitiesS0
smallcavityvolumesorshortandnarrowopticalwaveguides
PhotondensitiesS0:High-speedlasersrequireshortandnarrowcavitieswithstrongopticalconfinementStrongindexguidingintheopticalwaveguideisimportanttoconfinetheopticalmodetoanarrowregion.Ridgewaveguidelasers,inwhichthewaveguideissurroundedeitherbyairorlowdielectricconstantdielectric,arecommonlyused.PhotondensitiesS0:Thelaseroperatesinthefundamentalspatialmode,nottopartitionthephotondensityamonghigherordermodesandreducetheopticalconfinement.TypicallengthsoflasersbasedontheInGaAssystemareinthe100–150-
mrangeduetocomparativelyhighermaterialgain.ForInGaAsP-basedlasers,lengthsareoftheorderof400mduetolowermaterialgain.
Highdifferentialgaing0:HighdifferentialgainistypicallyobtainedusingQW’sandstrain.Comparedtoabulkmaterial,carrierdensityrisesverysharplywithcarrierinjectionintoaQWbecauseofmodifiedstep-likedensityofstates.Materialdesignisveryimportant.Gaincompressionfactor: animportantlimitationwhichhasthusfarlimitedreliable1.55-
mroom-temperatureoperationlaserstobandwidthslessthan30GHzdespitemuchresearcheffort.Twoprocessescontributetothegaincompression:ThespectralholeburningThecarrierheating.ThespectralholeburningCausedbythedepletionofcarriersatandaroundthelasingenergy.Ascarriersaredepleted,gainisreduced,whichdampenstheresponseofthelaser.Carriersconsumedbylasingaresuppliedbyinjectedcarriersrelaxingfromtheirinjectionenergiesbyintrabandrelaxationprocesses.Theserelaxationtimescanbereducedbyincreasingthecarriertocarrierscatteringrates,whichcanbeachievedbypdopingtheactivelayer.CarrierheatingCarriersatthebandedgeareconstantlyremovedduetostimulatedemission.Theremainingdistributionhasaneffectivetemperaturehigherthanthelatticetemperature,whichreducesthedifferentialgain.Carrierheatingishigherforstraineddevicesduetoincreasedvalencebandcurvature.Adevicedesignedusingtheaboveprinciples:Four5.7-nm-wideIn0.35Ga0.65AsQW’sseparatedby20.1-nmundoped
GaAsbarriers,itsdeepQW’sprovidesstrongconfinementandsuppressesthecarrierescape.Undoped
GaAsconfinementlayersonbothsidesoftheMQWregionareonly400-?thick,thinenoughtominimizecarrier-transport-relatedproblems.TheupperandlowercladdinglayersareAl0.8Ga0.2As,creatingstrongopticalconfinement.Thequalityofthematerialwasimprovedoverpreviousdesigns.Thedevicewasashort-ridgewaveguidelaseroperatingat1.1m.
pincreaseswithI.AtlowI,bandwidthislimitedbyp.AsIincrease,dampingstartstolimitthebandwidth.Atabiascurrentof155mA,the3-dBmodulationbandwidthexceeds40GHzandislimitedbythedamping.Thesmall-signalCWmodulationresponseofaridgewaveguidelaseratabiascurrentof155mA.Anotherveryimportantconcernforlinkdesignistherelativeintensitynoise(RIN)ofthelaser.RINdirectlyaffectsthenoisefigureofthelink.TypicalRINvaluesofhigh-speedlasersareinthe125–150-dB/Hzrange.Distributedfeedback(DFB)deviceshavelowerRINvaluesthanFabry–Perotdevices.ThetypicalRINspectrumofasemiconductorlaserresemblesitsfrequencyresponse:peakingat
plevelingoffoneithersideThelow-noisefrequencyrangeislessthanitsbandwidthsincetheresponseislimitedatfrequencieshigherthan
pnoiseisenhancedcloseto
pSignal-to-noiseratio(SNR)attheoutputofalinkcanbeexpressedasSNR=m2/(2
RIN
BW),whereBWisthesystembandwidth,andmisthemodulationindex.Improvementsin
preduceRINandconsequentlyincreaseSNRofthelink.Activeresearchareaatthecurrenttimeenhancingmodulationbandwidths.improvingtheslopeefficiency.Typicalslopeefficiencyorexternaldifferentialquantumefficiencyofhigh-speedlasersisinthe0.1–0.3W/Arange.Asignificantlimitationtoslopeefficiencyisthecouplinglossbetweenthelaserchipandsingle-modefiber.Recentdevelopmentsinhigh-speedlasersresultedinsmall-signalbandwidthsexceeding40and25GHzat1.1-and1.55-
mwavelengths,respectively.FurtherimprovementsintheslopeefficiencyandRINoftheselasersmaymakethemattractivecandidatesfordirectlymodulatedlinks.
微波光電子學(xué)的主要技術(shù)A.SourceTechnologies
DirectlyModulatedSemiconductorLasers:
ExternalModulators:
HeterodyneSources:
B.DetectionTechnologiesPhotodetectors:
OpticalControlofMicrowaveDevices:
ExternalModulators:ThemostcommonmaterialsforexternalmodulatorsareLiNbO3,III–Vcompoundsemiconductors,andelectroopticpolymers.LiNbO3andIII–Vcompoundsemiconductorsoffermaturematerialtechnology.Polymersoffersignificantpotential,butmaterialtechnologyisstillundergoingdevelopment.Atthecurrenttime,thereisasignificantamountofresearchefforttodevelophigh-performanceelectroopticpolymers.Modulatorsclassifiedintolumpedelementsmodulatorstraveling-wavemodulatorsModulatorsrealizedthroughtheelectro-absorptionmechanismtheinterferometricmechanismThemodulatedcomponentoftheopticalpoweroutputcanbewrittenasTheamountofmodulatedopticalpowerforagivenmodulatingsignalcanbeincreasedbyincreasingtheopticalinputpower.Microwavephotoniclinkscoulddisplaygainwithouttheuseofelectricalamplification.A.LumpedModulatorsElectro-absorptionmodulatorsoperatebyconvertingtheincidentlightintophoto-currentintheirabsorbingstate.WaveguidemodulatorsusingtheFranz–KeldysheffectinbulksemiconductormaterialsorthequantumconfinedStarkeffectinquantum-wellmaterials.ThequantumconfinedStarkeffect(QCSE)InaQW,electronsandholesareconfinedinthesamephysicalQW.Overlappingandinteractingstronglyandformabondcalledanexciton.Hasastrongabsorptionsomewhatsimilartoanatomicabsorption.Spectraofabsorptionisverysharp,andislocalizedinthevicinityofwavelengthscorrespondingtothebandgapoftheQW.Whenanexternalelectricfieldisapplied,electronandholeareforcedtooppositeendsoftheQW
physicallyseparated.Spatialoverlapoftheelectronandtheholeisreduced
excitonicabsorptionisdecreasedandbroadened.possibletomodulatetheabsorptionverystronglywithexternalfieldsaroundanarrowwavelengthrange
knownastheQCSE.EmbeddingsuchQW’sinawaveguide applyinganelectricfieldchangingtheabsorptionoftheQW’sthroughtheQCSEmodulatingtheinsertionlossofthewaveguideTypically,MQW’sareusedtoincreaseabsorptionandareembeddedintheiregionofareversebiasedp-i-ndiode.ThephotocurrentspectraofanunstrainedMQWmaterialasafunctionofwavelengthatdifferentappliedvoltages.Twopeaksareresolvedintheabsorptionspectra,duetoexcitonsformedbetweenelectronsandhh’sandelectronsandlh’s.Transitionenergiesofhhandlh
excitonsaredifferent.Thehh
excitonsinteractwithTEpolarizedlightandlh
excitonsinteractwithbothTEandTMpolarizedlight.Asbiasvoltageincreases,absorptioncharacteristicsbroadenandpeakabsorptiondecreasesandmovestowardlongerwavelengths.At1.55-mabsorptionismodulatedstronglywhenbiaschangesbetween0and3V.Possibletomakeaverysimplemodulator,whichisaveryshortwaveguide.ThetransmissionthroughsuchamodulatorasafunctionofappliedvoltagecanbeexpressedasTheon/offratioofanEAmodulatorindecibelscanbeexpressedasOpticalpropagationlossofEAmodulatorsislarge,typicallyinthe15–20-dB/mmrange.Maincomponentsofthislossarethefreecarrierabsorption,especiallyintheplayers,andband-to-bandabsorption.Thesecondlosscomponentcanbemadesmallerbyincreasingtheseparationbetweenthewavelengthofoperationandtheabsorptionpeak,whichiscalleddetuning.Typicaldetuningvaluesareabout20–50nm.Typical
/
valuesareinthe3–10range.
Largeon/offratiodevicescanbeobtainedusinglongdevices,butthatalsoincreasestheinsertionloss.ForthetypicalEAmodulatorlengthsin50–300-
mrangepropagationlossis1–3dB.Togetlargeextinctionratioswithlowdeviceinsertionloss,
/
shouldbemaximized.
Fiber-to-fiberinsertionlossofaEAmodulatorasafunctionofexternalbiasatdifferentwavelengths.QCSEismostpronouncedforphotonenergiesnearthebandgapofthematerialandshowsastrongwavelengthdependence.Atshorterwavelengths,modulationbecomesmoreefficient,butinsertionlossalsoincreases.ForalumpedelementthespeedofoperationislimitedbytheRCtimeconstantofthecircuit.EAmodulatorsareveryshortdevicesand,hence,havesmalldevicecapacitance.Typically,a2.5-
m-wideand150-
m-longdevicehasacapacitanceofabout0.33pF,whichislowenoughfor20-GHzbandwidth.Bulkmodulatorsat1.55
mhaveachieved-3-dBelectricalbandwidthsof50GHzwith4.5-Vdrive20-dBextinction8dBfiber-to-fiberinsertionlossToobtainsufficientlylowcapacitanceforsuchhigh-speedoperation,theactivesectionofthewaveguidemustbekeptveryshort,50
minthisexample,limitingthemodulationsensitivity.
Measuredfrequencyresponseofa1.55-
mmodulator,showinga3-dBelectricalbandwidthof50GHz.Opticalpower-handlingcapabilityForlargeopticalpower-handling,photo-generatedcarriersshouldescapefromtheQW’sandshouldbeeasilycollectedbytheohmiccontacts.ThecarrierpileupscreenstheelectricfieldinsidetheQW.Thedecreasedfieldfurtherinhibitsthecarrierescapeandenhancescarrierpileup.Theendeffectisthesaturationoftheabsorptionanddegradationinthemodulationresponse.Materialdesignswithlowerhhmassandlowervalencebanddiscontinuity.Tensilestrainreducesthehhmassandbarrierheightsforelectronsandhh’s
reductionofphoto-generatedcarriersweepouttimes
decreasingthecarrierpileupinthewells.OpticalsaturationperformanceoftheEAmodulatorimproves.Anattractivefeatureofelectro-absorptionmodulatorsisthattheycanbeintegratedwithsemiconductorlaserstoformcompactopticalsourcescapableofultrafastmodulation.CurrentdeviceresearchonEAmodulatorsisonreducingthedrivevoltage,whileincreasingtheon/offratioandthebandwidth.Forlumpedoperation,widebandwidthrequiresashortdevice,whereasforashortdevice,on/offratioislowandoperationvoltageishigh.Inoneapproach,adouble-passmodulatorwasproposedanddemonstrated.Devicecapacitanceremainsunchanged,butabsorptionlengthisdoubled.AnotherrecentresearchdirectionistousetheEAmodulatorasatraveling-wavedevice.馬赫-曾德爾(Mach-Zehnder)(MZ)干涉型調(diào)制器示意圖如下圖所示。由兩個線偏振的調(diào)相波相干合成而實現(xiàn)強度調(diào)制功能。在LiNbO3晶體的襯底上制成Ti擴散分叉條狀波導(dǎo)。條狀波導(dǎo)中間和兩側(cè)制作表面電極。在外加電場的作用下,在分叉的波導(dǎo)中傳輸?shù)膶?dǎo)模由于受到大小相等、符號相反的電場的作用,分別產(chǎn)生
和-
的相位變化。在輸出的第二個分叉匯合處,相干合成的光強將隨相位差的不同而異,從而得到強度調(diào)制。在MZ干涉儀型強度調(diào)制器中,提高調(diào)制深度及降低插入損耗,必須采取以下措施:
(1)分支張角不宜太大(一般為1o左右),因為張角越大,輻射損耗越大。
(2)波導(dǎo)必須設(shè)計成單模,防止高階模被激勵。
(3)波導(dǎo)和電極在結(jié)構(gòu)上應(yīng)嚴(yán)格對稱,使兩個調(diào)相波的固定相位差等于零。用Ti擴散LiNbO3波導(dǎo)制成的MZ干涉型調(diào)制器,其調(diào)制深度可達(dá)80%,功耗35
W/MHz左右。Interferometricmodulatorsusinglithium–niobatetechnologieshavebeenrealizedwith-3-dBelectricalbandwidthofover70GHzmodulatorlength2-cmanextinctionvoltageV
of5.1V.Fiber-to-fiberinsertionlosswas5.6dB.FortheGaAssystem-3-dBelectricalbandwidths50GHzV
of13Vfora1-cm-longmodulatorThesmallsizeoftheopticalguidesinGaAsleadstosignificantfiber-to-modulatorcouplinglossessothatthefiber-to-fiberlossforsuchmodulatorsisoforder10dB.
ThegainofanexternallymodulatedlinkusingaMach–Zehnder-typemodulatorisproportionalto(tP/V
)2Ptheinputopticalpowertisthefiber-to-fiberinsertionlossV
theon/offvoltageofthemodulator.LowV
,capabilityofhandlinglargeamountsofopticalpowerandlowfiber-to-fiberinsertionlossareessentialtogethighgainlinks.ElectroopticpolymermodulatorsOperationat110GHzhasbeendemonstrated.Problemsofopticalpowerhandling,stability,andhigh-temperatureoperationarebeingovercome
makingpolymertechnologyoneofconsiderableinterest.B.Traveling-waveModulatorsAnapproachtoobtainverywidebandwidthmodulators.Theelectrodeisdesignedasatransmissionline.ElectrodecapacitanceisdistributedanddoesnotlimitthemodulatorspeedduetoRCtime-constantlimitations.Themodulatingelectricalsignalontheelectrodetravelsinthesamedirectionasthemodulatedopticalsignal.Whentravelwiththesamevelocity,thephasechangeinducedbytheelectricalsignalisintegratedalongthelengthoftheelectrode.Theelectrodecanbemadeverylong,typicallythousandsofwavelengths.Longelectrodeallowsaverysmallphasechangeoverawavelengthtoaccumulatetoanappreciablevalue.Drivevoltagerequirementsissignificantlyrelaxed,withoutsacrificingelectricalbandwidth.Thepropertiesoftheelectrodedeterminethemainpropertiesofthemodulatorsuchasbandwidthanddrivevoltage.Thisapproachismostefficientifthegroupvelocitiesoftheelectricalandopticalsignalsarematched.characteristicimpedanceoftheelectrode(almostuniversally50)ismatchedtothatofthedriver.Iftheterminationisdifferentthanthecharacteristicimpedance,afrequencydependentstanding-wavepatternwillbegeneratedontheelectrode.Thesmall-signalmodulationresponseofatraveling-wavemodulatorwithacharacteristicimpedancematchedtoboththedriverandloadimpedanceisgivenasAlow-loss,velocity-andimpedance-matchedelectrodeisessentialfortherealizationofaverywide-bandwidthtraveling-wavemodulator.Toreducethedrivevoltageofthemodulatorarequirementfortheelectrodeistogenerateastrongelectricfieldoverlappingwellwiththeopticalmodeanddirectedinacertaindirectiondictatedbytheelectroopticmaterial.1)LiNbO3Traveling-WaveModulators:LiNbO3traveling-wavemodulatorshavethemostmaturetechnology.TheopticalstructureisaMach–Zehnderinterferometer.ThemicrowavestructureisaCPWtransmissionline.AschematicofatypicalLiNbO3traveling-wavemodulatorTheeffectivemicrowaveindexofaCPWonLiNbO3islargerthan4.TheeffectiveindexofanopticalmodeinaTiindiffusedLiNbO3opticalwaveguideisabout2.15.Anelectricalsignalappliedtotheelectrodewilltravelslowerthantheopticalwave.VelocitymatchinginLiNbO3modulatorsrequiresincreasingthevelocityofpropagationofthemicrowaveontheelectrode.ThemostcommonwayofachievingvelocitymatchingistouseaSiO2bufferlayerundertheelectrodeandtoincreasethethicknessoftheconductors.Atraveling-wavemodulatorwith-3-dBopticalbandwidthexceeding110GHz,employingridgestructure,
hasbeenrecentlydemonstrated.modulatorlengthL=2cmV
is5.1V.Ifthelengthofthesamedeviceisincreasedto3cm,V
decreasesto3.5V,theopticalbandwidthsdecreaseto45GHz,Traveling-waveLiNbO3modulatorsofferstabledevicesthatcanhandlelargeopticalpowers.Suchmodulatorswithfiber-to-fiberinsertionlossaround5dB.V
reductionisbeingpursued.
2)GaAs/AlGaAsTraveling-WaveModulators:III–VcompoundsemiconductorssuchasGaAs,InP,andtheiralloyspossesselectroopticcoefficientThemostcommonlyusedopticalstructureisaMach–Zehnderinterferometer.OnewayofmakingopticalwaveguidesinIII–Vcompoundsemiconductorsistoadjusttheindexofrefractionbycontrollingthecompositionoftheiralloys.IncreasingAlcompositionxinAlxGa1-xAscompoundsemiconductordecreasesitsindexofrefraction.AlxGa1-xAsislatticematchedtoGaAsforallxvalues.BygrowingAlxGa1-xAslayersepitaxially,ahigherindexmaterialissandwichedbetweentwolowerindexmaterials,provideswaveguidingintheverticaldirection.Aribisetchedtoprovidelateralwaveguiding.Theeffectiveindexundertheribishigherthantheeffectiveindexoutsidetherib,providingalateralindexstepandatwo-dimensionalwaveguideisformed.ThecrystalstructureofIII–VmaterialsisZincBlende.Theelectroopticcoefficientis1.4pm/V,about20timeslessthanthatofLiNbO3.Netindexchangeforagivenelectricfieldisonlyaboutfivetimeslessduetohigherindexofrefractionofthesemiconductor.Theopticalindexofrefractionisaround3.4.Themicrowaveindexisabout2.65.Velocitymatchingrequiresslowingdownofthemicrowavesignal.Themostcommonlyusedtechniquetoslowthemicrowavesignalistouseaslow-wavetransmissionline.Suchlinesareobtainedbyperiodicallyloadingauniformtransmissionline.Thesmall-signalresponseofaGaAs/AlGaAstraveling-wavemodulatorsTheelectricalbandwidthofaGaAs/AlGaAstraveling-wavemodulatorsat1.55
misinexcessof40GHz.Flatupto20GHzandstartstorolloffgraduallyandbecomesabout1.5–2dBdownat40GHz.Extrapolatingthecurvefitthebandwidthwasestimatedtobebetween50to60GHz.GaAsmodulatorscanhandleverylargeamountsofopticalpowerssincetheyareverysimilartosemiconductorlasersthatgenerateveryhighopticalpowers.Practicallimittothepower-handlingcapabilityisthecatastrophicfacetdamage.GaAsmodulatorsalsoofferstableoperation.V
valuesarearound15VFiber-to-fiberinsertionlossisinthe10–15-dBrange.Effortstoreducethedrivevoltageandfiber-to-fiberinsertionusingnovelprocessingtechniquesareunderway.
3)PolymerTraveling-WaveModulators:Organicpolymershavemanyattractivefeaturesforintegratedopticalapplications.possibletoformmultilayerpolymerstacks.canbepatternedusingseveraldifferenttechniques.canbemadeelectroopticthroughhigh-temperaturepoling.Organicpolymerspresentgoodopticalpropertieslowpropagationlosslowindexofrefractionveryclosetothatofthesingle-modefiberThesepropertiesresultedinpassivelow-losspolymeropticalwaveguidesthatcancoupletosingle-modeopticalfibersveryefficiently.Electroopticcoefficientr33valuesrangebetween1–20pm/V.Possibletogetverygoodvelocitymatchingusingamicrostripelectrode.PolymermodulatorsoperatingatW-band(75–110GHz)havebeenreported,V
valuesarearound10Vandfiber-to-fiberinsertionlossisabout10dB.Polymermodulatorsofferhigh-frequencyresponseandflexible、low-costtechnology.Atthecurrenttimetheelectroopticpolymerisaveryintenseresearcharea.toimprovematerialstabilityandelectroopticpropertiesofpolymers.theeliminationofhigh-temperatureelectric-fieldpoling.Biasstabilityandpower-handlingcapabilityissuesarealsounderexamination.4).Traveling-WaveEAModulators:ThespecialstructureofanEAmodulatorpresentsinterestingissues.TheopticalpropagationlossoftheEAdeviceisratherhigh,increasingthelengthoverafewhundredmicrometersintroducesexcessiveloss.Largedevicecapacitanceperunitlengthmakesitdifficulttomakea50-
transmissionlinewithmatchedvelocity.ForTW-EAmodulatorelectrodes,measuredmicrowavelosscoefficientsofabout60–80dB/cmat40GHzwerereported.Rathershortdevicehastobeused,velocitymatchingisnotanissueuptofrequencieswellintothesubmillimeter-waverange.Thebandwidthistypicallylimitedbythemicrowaveloss.A200-
m-longTW-EAdevicewithabandwidthover64GHzwasreported.Thedevicewaspolarizationinsensitiveandoperatedat1.55
m.For20-dBon/offratio,drivevoltagewas3V.Comparedwithlumpedoperation(bandwidthsof50GHzwith4.5-Vdrive)drivevoltageandbandwidthisimprovedusingTW-EAmodulatorapproach.Inalltraveling-wavedesigns,broad-bandlinearizationofthetransfercharacteristicsandpolarization-independentoperationremainaschallengesfordeviceresearchers.Linearityisanimportantrequirementforanaloglinks.Allmodulatorshavenonlineartransferfunctions.Thedeviceisbiasedatspecificpointsontheelectrical-to-opticaltransferfunctiontoassurelinearity.Thestabilityofthebiaspointarealsoveryimportant.微波光電子學(xué)的主要技術(shù)A.SourceTechnologies
DirectlyModulatedSemiconductorLasers:
ExternalModulators:
HeterodyneSources:
B.DetectionTechnologiesPhotodetectors:
OpticalControlofMicrowaveDevices:
微波信號的光外差合成
(HeterodyneSources):Theuseofopticalgenerationofmicrowavesignalshasattractedconsiderableattentions.Amethodofproducingthedesiredmicrowavesignalistheheterodynemixingoftwoopticalcarriers.Considertwomonochromaticopticalsourcesemittingatfrequencies
1and2,where|1-2|<<1,2:theiropticalfieldsareoverlappedwithcommonpolarizationilluminateaphotodetectorofresponsivityRtheresultingphotocurrentisgivenbyNotethetermatthedifferencefrequencybetweenthetwosources.Lasersforthirdwindowopticalcommunicationstypicallyemitatfrequenciesoforder200THzSlightdetuningofthesourcesenablesfrequencieslimitedonlybythephotodetectorbandwidthtobegenerated.Thefree-runninglinewidthofsemiconductorlasersislarge(typically1–50MHz)Thetemperatureandcurrentdependenceoftheiremissionfrequencyisstrong(typically10GHz/Kand1GHz/mA,respectively)Theapplicationofspecialcontroltechniquesisrequiredtoobtainaspectrallypuremicrowaveheterodynesignal.Injectionlockingtwosemiconductorslavelaserstodifferentfrequencymodulationsidebandsofasemiconductormasterlasercouldcorrelatingthephasenoiseoftheslavelasers.Heterodynefrequencyof35GHzwithlinewidthslessthan10Hzwerereported.Injectionlockingtospectrallinesfromanopticalcombgeneratorhasbeenusedtogeneratefrequenciesupto110GHz.采用一個光學(xué)梳狀頻率發(fā)生器控制兩個光注入鎖定激光器,將激光器的輸出照射在一個單一載流子光二極管上進(jìn)行外差。該方法可以產(chǎn)生輸出功率在毫瓦量級,頻率在10-110GHz范圍可調(diào)的微波。Blockdiagramofopticalmillimeter-wavesynthesissystemTheOFCGemitsanopticalcombwithexactfrequencyspacingfRF.Frommorethan100comblines,eachinjection-lockedlaserselectsonlyone.ThetwolinesarecombinedandarethenfedintoanEDFA.Thedifferencefrequencyisanintegralmultipleofthereferencefrequencyn
f
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度專業(yè)草皮種植基地合作合同范本
- 2025年度化肥行業(yè)市場拓展與品牌推廣合同
- 2025年度工業(yè)廠房合同轉(zhuǎn)讓與工程預(yù)決算審計合同
- 2025年度智慧城市安全防護(hù)系統(tǒng)建設(shè)勞務(wù)合同補充協(xié)議
- 2025年度環(huán)保污水處理設(shè)施建設(shè)與運營合同范本
- 2025年度減肥瘦身產(chǎn)品進(jìn)出口貿(mào)易合同
- 2025年度個人消費信貸合同正文本(年度版)
- 2025年度物聯(lián)網(wǎng)設(shè)備研發(fā)生產(chǎn)合同
- 2025年度工地圍擋智能化監(jiān)控系統(tǒng)安裝與維護(hù)合同
- 2025年度汽車零部件委托加工保密合同
- 江蘇省蘇州市2024-2025學(xué)年第一學(xué)期八年級數(shù)學(xué)期末模擬卷(一)(無答案)
- 【歷史】秦漢時期:統(tǒng)一多民族國家的建立和鞏固復(fù)習(xí)課件-2024-2025學(xué)年統(tǒng)編版七年級歷史上冊
- 社區(qū)中心及衛(wèi)生院65歲及以上老年人健康體檢分析報告模板
- 化工過程安全管理導(dǎo)則AQT 3034-2022知識培訓(xùn)
- 第02講 導(dǎo)數(shù)與函數(shù)的單調(diào)性(教師版)-2025版高中數(shù)學(xué)一輪復(fù)習(xí)考點幫
- 2024屆新高考語文高中古詩文必背72篇 【原文+注音+翻譯】
- 2024電力建設(shè)工程質(zhì)量問題通病防止手冊
- 中華人民共和國學(xué)前教育法
- 2024年貴州公務(wù)員考試申論試題(B卷)
- 三年級(下冊)西師版數(shù)學(xué)全冊重點知識點
- 期末練習(xí)卷(試題)-2024-2025學(xué)年四年級上冊數(shù)學(xué)滬教版
評論
0/150
提交評論