版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2025屆云南省楚雄州大姚縣第一中學高三考前熱身數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的左右焦點為,一條漸近線方程為,過點且與垂直的直線分別交雙曲線的左支及右支于,滿足,則該雙曲線的離心率為()A. B.3 C. D.22.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-33.過拋物線的焦點且與的對稱軸垂直的直線與交于,兩點,,為的準線上的一點,則的面積為()A.1 B.2 C.4 D.84.已知隨機變量服從正態(tài)分布,,()A. B. C. D.5.德國數(shù)學家萊布尼茲(1646年-1716年)于1674年得到了第一個關于π的級數(shù)展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數(shù)學家?天文學家明安圖(1692年-1765年)為提高我國的數(shù)學研究水平,從乾隆初年(1736年)開始,歷時近30年,證明了包括這個公式在內(nèi)的三個公式,同時求得了展開三角函數(shù)和反三角函數(shù)的6個新級數(shù)公式,著有《割圓密率捷法》一書,為我國用級數(shù)計算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關于π的級數(shù)展開式”計算π的近似值(其中P表示π的近似值),若輸入,則輸出的結(jié)果是()A. B.C. D.6.若實數(shù)x,y滿足條件,目標函數(shù),則z的最大值為()A. B.1 C.2 D.07.過圓外一點引圓的兩條切線,則經(jīng)過兩切點的直線方程是().A. B. C. D.8.在一個數(shù)列中,如果,都有(為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,叫做這個數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,,公積為,則()A. B. C. D.9.已知雙曲線x2a2-y2b2=1(a>0,b>0),其右焦點F的坐標為(c,0),點A是第一象限內(nèi)雙曲線漸近線上的一點,O為坐標原點,滿足|OA|=A.2 B.2 C.23310.設集合,集合,則=()A. B. C. D.R11.設為虛數(shù)單位,為復數(shù),若為實數(shù),則()A. B. C. D.12.函數(shù)的圖象大致是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的值域為_________.14.展開式中的系數(shù)的和大于8而小于32,則______.15.現(xiàn)有一塊邊長為a的正方形鐵片,鐵片的四角截去四個邊長均為x的小正方形,然后做成一個無蓋方盒,該方盒容積的最大值是________.16.如圖,在平面四邊形ABCD中,|AC|=3,|BD|=4,則(AB三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數(shù)列是等差數(shù)列,其前項和為,且,.(1)求數(shù)列的通項公式;(2)證明:.18.(12分)在平面直角坐標系中,以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于兩點.(1)寫出曲線的直角坐標方程和直線的普通方程;(2)若點的極坐標為,,求的值.19.(12分)己知,,.(1)求證:;(2)若,求證:.20.(12分)已知在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù).).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為,曲線與直線其中的一個交點為,且點極徑.極角(1)求曲線的極坐標方程與點的極坐標;(2)已知直線的直角坐標方程為,直線與曲線相交于點(異于原點),求的面積.21.(12分)如圖,D是在△ABC邊AC上的一點,△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長.22.(10分)已知函數(shù)(1)求函數(shù)的單調(diào)遞增區(qū)間(2)記函數(shù)的圖象為曲線,設點是曲線上不同兩點,如果在曲線上存在點,使得①;②曲線在點M處的切線平行于直線AB,則稱函數(shù)存在“中值和諧切線”,當時,函數(shù)是否存在“中值和諧切線”請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
設,直線的方程為,聯(lián)立方程得到,,根據(jù)向量關系化簡到,得到離心率.【詳解】設,直線的方程為.聯(lián)立整理得,則.因為,所以為線段的中點,所以,,整理得,故該雙曲線的離心率.故選:.【點睛】本題考查了雙曲線的離心率,意在考查學生的計算能力和轉(zhuǎn)化能力.2、D【解析】分析:根據(jù)平面向量的數(shù)量積可得,再結(jié)合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數(shù)量積以及投影的應用問題,也考查了數(shù)形結(jié)合思想的應用問題.3、C【解析】
設拋物線的解析式,得焦點為,對稱軸為軸,準線為,這樣可設點坐標為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設拋物線的解析式,則焦點為,對稱軸為軸,準線為,∵直線經(jīng)過拋物線的焦點,,是與的交點,又軸,∴可設點坐標為,代入,解得,又∵點在準線上,設過點的的垂線與交于點,,∴.故應選C.【點睛】本題考查拋物線的性質(zhì),解題時只要設出拋物線的標準方程,就能得出點坐標,從而求得參數(shù)的值.本題難度一般.4、B【解析】
利用正態(tài)分布密度曲線的對稱性可得出,進而可得出結(jié)果.【詳解】,所以,.故選:B.【點睛】本題考查利用正態(tài)分布密度曲線的對稱性求概率,屬于基礎題.5、B【解析】
執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時滿足判定條件,輸出結(jié)果,故選:B.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,得到程序框圖的計算功能是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.6、C【解析】
畫出可行域和目標函數(shù),根據(jù)平移得到最大值.【詳解】若實數(shù)x,y滿足條件,目標函數(shù)如圖:當時函數(shù)取最大值為故答案選C【點睛】求線性目標函數(shù)的最值:當時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最??;當時,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.7、A【解析】過圓外一點,引圓的兩條切線,則經(jīng)過兩切點的直線方程為,故選.8、B【解析】
計算出的值,推導出,再由,結(jié)合數(shù)列的周期性可求得數(shù)列的前項和.【詳解】由題意可知,則對任意的,,則,,由,得,,,,因此,.故選:B.【點睛】本題考查數(shù)列求和,考查了數(shù)列的新定義,推導出數(shù)列的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.9、C【解析】
計算得到Ac,bca【詳解】雙曲線的一條漸近線方程為y=bax,A故Ac,bca,F(xiàn)c,0,故Mc,故選:C.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.10、D【解析】試題分析:由題,,,選D考點:集合的運算11、B【解析】
可設,將化簡,得到,由復數(shù)為實數(shù),可得,解方程即可求解【詳解】設,則.由題意有,所以.故選:B【點睛】本題考查復數(shù)的模長、除法運算,由復數(shù)的類型求解對應參數(shù),屬于基礎題12、A【解析】
根據(jù)復合函數(shù)的單調(diào)性,同增異減以及采用排除法,可得結(jié)果.【詳解】當時,,由在遞增,所以在遞增又是增函數(shù),所以在遞增,故排除B、C當時,若,則所以在遞減,而是增函數(shù)所以在遞減,所以A正確,D錯誤故選:A【點睛】本題考查具體函數(shù)的大致圖象的判斷,關鍵在于對復合函數(shù)單調(diào)性的理解,記住常用的結(jié)論:增+增=增,增-減=增,減+減=減,復合函數(shù)單調(diào)性同增異減,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用換元法,得到,利用導數(shù)求得函數(shù)的單調(diào)性和最值,即可得到函數(shù)的值域,得到答案.【詳解】由題意,可得,令,,即,則,當時,,當時,,即在為增函數(shù),在為減函數(shù),又,,,故函數(shù)的值域為:.【點睛】本題主要考查了三角函數(shù)的最值,以及利用導數(shù)研究函數(shù)的單調(diào)性與最值,其中解答中合理利用換元法得到函數(shù),再利用導數(shù)求解函數(shù)的單調(diào)性與最值是解答的關鍵,著重考查了推理與預算能力,屬于基礎題.14、4【解析】
由題意可得項的系數(shù)與二項式系數(shù)是相等的,利用題意,得出不等式組,求得結(jié)果.【詳解】觀察式子可知,,故答案為:4.【點睛】該題考查的是有關二項式定理的問題,涉及到的知識點有展開式中項的系數(shù)和,屬于基礎題目.15、【解析】
由題意容積,求導研究單調(diào)性,分析即得解.【詳解】由題意:容積,,則,由得或(舍去),令則為V在定義域內(nèi)唯一的極大值點也是最大值點,此時.故答案為:【點睛】本題考查了導數(shù)在實際問題中的應用,考查了學生數(shù)學建模,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.16、-7【解析】
由題意得AB+【詳解】由題意得ABBC+∴AB+【點睛】突破本題的關鍵是抓住題中所給圖形的特點,利用平面向量基本定理和向量的加減運算,將所給向量統(tǒng)一用AC,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】
(1)設數(shù)列的公差為,由,得到,再結(jié)合題干所給數(shù)據(jù)得到公差,即可求得數(shù)列的通項公式;(2)由(1)可得,再利用放縮法證明不等式即可;【詳解】解:(1)設數(shù)列的公差為,∵,∴,∴,∴.(2)∵,∴,∴.【點睛】本題考查等差數(shù)列的通項公式的計算,放縮法證明數(shù)列不等式,屬于中檔題.18、(1)曲線的直角坐標方程為即,直線的普通方程為;(2).【解析】
(1)利用代入法消去參數(shù)方程中的參數(shù),可得直線的普通方程,極坐標方程兩邊同乘以利用即可得曲線的直角坐標方程;(2)直線的參數(shù)方程代入圓的直角坐標方程,根據(jù)直線參數(shù)方程的幾何意義,利用韋達定理可得結(jié)果.【詳解】(1)由,得,所以曲線的直角坐標方程為,即,直線的普通方程為.(2)將直線的參數(shù)方程代入并化簡、整理,得.因為直線與曲線交于,兩點.所以,解得.由根與系數(shù)的關系,得,.因為點的直角坐標為,在直線上.所以,解得,此時滿足.且,故..【點睛】參數(shù)方程主要通過代入法或者已知恒等式(如等三角恒等式)消去參數(shù)化為普通方程,通過選取相應的參數(shù)可以把普通方程化為參數(shù)方程,利用關系式,等可以把極坐標方程與直角坐標方程互化,這類問題一般我們可以先把曲線方程化為直角坐標方程,用直角坐標方程解決相應問題.19、(1)證明見解析(2)證明見解析【解析】
(1)采用分析法論證,要證,分式化整式為,再利用立方和公式轉(zhuǎn)化為,再作差提取公因式論證.(2)由基本不等式得,再用不等式的基本性質(zhì)論證.【詳解】(1)要證,即證,即證,即證,即證,即證,該式顯然成立,當且僅當時等號成立,故.(2)由基本不等式得,,當且僅當時等號成立.將上面四式相加,可得,即.【點睛】本題考查證明不等式的方法、基本不等式,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題..20、(1)極坐標方程為,點的極坐標為(2)【解析】
(1)利用極坐標方程、普通方程、參數(shù)方程間的互化公式即可;(2)只需算出A、B兩點的極坐標,利用計算即可.【詳解】(1)曲線C:(為參數(shù),),將代入,解得,即曲線的極坐標方程為,點的極坐標為.(2)由(1),得點的極坐標為,由直線過原點且傾斜角為,知點的極坐標為,.【點睛】本題考查極坐標方程、普通方程、參數(shù)方程間的互化以及利用極徑求三角形面積,考查學生的運算能力,是一道基礎題.21、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用三角形面積公式以及并結(jié)合正弦定理,可得結(jié)果.(Ⅱ)根據(jù),可得,然后使用余弦定理,可得結(jié)果.【詳解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以邊.【點睛】本題考查三角形面積公式,正弦定理以及余弦定理的應用,關鍵在于識記公式,屬中檔題.22、(1)見解析(2)不存在,見解析【解析】
(1)求出函數(shù)的導數(shù),通過討論的范圍求出函數(shù)的單調(diào)區(qū)間即可;(2)求出函數(shù)的導數(shù),結(jié)合導數(shù)的幾
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版模板醫(yī)療設備租賃與維護合同4篇
- 二零二五版門禁系統(tǒng)與消防報警系統(tǒng)聯(lián)動施工合同3篇
- 二零二五版門窗行業(yè)產(chǎn)品追溯與防偽技術(shù)合同4篇
- 2025年度跨境電商平臺入駐商家租賃合同4篇
- 2025年度露營裝備研發(fā)與知識產(chǎn)權(quán)保護合同4篇
- 2025年個人借款咨詢與信用風險控制服務協(xié)議3篇
- 2025版向日葵種子種子質(zhì)量檢測與認證服務合同3篇
- 2025版企業(yè)租車服務合同范本(2025版)2篇
- 二零二五年離婚子女撫養(yǎng)權(quán)及財產(chǎn)分割執(zhí)行合同3篇
- 2025版汽車銷售場地租賃與智能化管理系統(tǒng)合作協(xié)議4篇
- 2024公路瀝青路面結(jié)構(gòu)內(nèi)部狀況三維探地雷達快速檢測規(guī)程
- 2024年高考真題-地理(河北卷) 含答案
- 2024光儲充一體化系統(tǒng)解決方案
- 處理后事授權(quán)委托書
- 食材配送服務方案投標方案(技術(shù)方案)
- 足療店營銷策劃方案
- 封條(標準A4打印封條)
- 2024年北京控股集團有限公司招聘筆試參考題庫含答案解析
- 延遲交稿申請英文
- 運動技能學習與控制課件第十章動作技能的指導與示范
- 石油天然氣建設工程交工技術(shù)文件編制規(guī)范(SYT68822023年)交工技術(shù)文件表格儀表自動化安裝工程
評論
0/150
提交評論