人教版八年級上冊數(shù)學(xué)期末考試試題有答案_第1頁
人教版八年級上冊數(shù)學(xué)期末考試試題有答案_第2頁
人教版八年級上冊數(shù)學(xué)期末考試試題有答案_第3頁
人教版八年級上冊數(shù)學(xué)期末考試試題有答案_第4頁
人教版八年級上冊數(shù)學(xué)期末考試試題有答案_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

人教版八年級上冊數(shù)學(xué)期末考試試卷2021年9月一、選擇題。(每小題只有一個正確答案,每小題3分)1.在以下綠色食品、回收、節(jié)能、節(jié)水四個標(biāo)志中,是軸對稱圖形的是()A.B.C.D.2.下列各組線段中,能組成三角形的是()A.2,3,5 B.3,4,8 C.3,3,4 D.7,4,23.已知可以寫成一個完全平方式,則可為()A.4 B.8 C.16 D.4.已知,則A,B的值分別為()A.A=3,B=﹣4 B.A=4,B=﹣3 C.A=1,B=2 D.A=2,B=15.如圖,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,則CD等于()A.3 B.4 C.5 D.66.若x+m與x+2的乘積化簡后的結(jié)果中不含x的一次項,則m的值為()A.2 B.-2 C.4 D.-47.一個正方形的邊長增加3cm,它的面積就增加99cm2,這個正方形的邊長為()A.14cm B.15cm C.16cm D.17cm8.如圖所示,正方形網(wǎng)格中,網(wǎng)格線的交點稱為格點,已知點A,B是兩個格點,如果點C也是圖中的格點,且使得△ABC為等腰直角三角形,那么點C的個數(shù)為()A.4 B.5 C.6 D.79.如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:3.A.1 B.2 C.3 D.410.已知∠2是△ABC的一個外角,那么∠2與∠B+∠1的大小關(guān)系是()A.∠2>∠B+∠1 B.∠2=∠B+∠1C.∠2<∠B+∠1 D.無法確定二、填空題11.用科學(xué)記數(shù)法表示下數(shù):0.00123=__________.12.正六邊形的每個內(nèi)角等于______________°.13.若,則常數(shù)______.14._______________.15.分式方程的解是_____.16.如圖,是一塊三角形木板的殘余部分,量得∠A=100°,∠B=40°,這塊三角形木板另外一個角是__度.三、解答題17.計算:(1)(2)(3)18.如圖,AC=BC,AE⊥CD于點A,BD⊥CE于點B.(1)求證:CD=CE;(2)若點A為CD的中點,求∠C的度數(shù).19.如圖,四邊形ABCD中,∠B=∠C=90°,E是BC的中點,DE平分∠ADC.(1)求證:AE平分∠BAD.(2)求證:AD=AB+CD.20.先化簡,再求值:,其中.21.珠海到韶關(guān)的距離約為360千米,小劉駕駛小轎車,小張駕駛大貨車,兩人都從珠海去韶關(guān),小劉比小張晚出發(fā)90分鐘,最后兩車同時到達韶關(guān),已知小轎車的速度是大貨車速度的1.5倍.(1)分別求小轎車和大貨車的速度;(2)當(dāng)小劉行駛了2小時,此時兩車相距多少千米?22.如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:(1)△AEF≌△CEB;(2)AF=2CD.23.閱讀下列材料:材料1、將一個形如x2+px+q的二次三項式因式分解時,如果能滿足q=mn且p=m+n,則可以把x2+px+q因式分解成(x+m)(x+n).(1)x2+4x+3=(x+1)(x+3)(2)x2﹣4x﹣12=(x﹣6)(x+2)材料2、因式分解:(x+y)2+2(x+y)+1解:將“x+y”看成一個整體,令x+y=A,則原式=A2+2A+1=(A+1)2再將“A”還原,得:原式=(x+y+1)2上述解題用到“整體思想”,整體思想是數(shù)學(xué)解題中常見的一種思想方法,請你解答下列問題:(1)根據(jù)材料1,把x2﹣6x+8分解因式.(2)結(jié)合材料1和材料2,完成下面小題:①分解因式:(x﹣y)2+4(x﹣y)+3;②分解因式:m(m+2)(m2+2m﹣2)﹣3.24.如圖,點O是等邊△ABC內(nèi)一點,,,△BOC≌△ADC,連接OD.(1)求證:△COD是等邊三角形;(2)當(dāng)時,試判斷△AOD的形狀,并說明理由;(3)當(dāng)△AOD是等腰三角形時,求的度數(shù).25.認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾的探究片段,完成所提出的問題.探究1:如圖1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點,通過分析發(fā)現(xiàn)∠BOC=90°+,理由如下:∵BO和CO分別是∠ABC和∠ACB的角平分線∴∠1=∠ABC,∠2=∠ACB∴∠1+∠2=(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°-∠A∴∠1+∠2=(180

°?∠A)=90°?∠A∴∠BOC=180°-(∠1+∠2)=180°-(90°-∠A)=90°+∠A探究2:如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點,試分析∠BOC與∠A有怎樣的關(guān)系?請說明理由.探究3:如圖3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點,則∠BOC與∠A有怎樣的關(guān)系?(只寫結(jié)論,不需證明)結(jié)論:參考答案1.D【分析】根據(jù)軸對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.【詳解】A、不是軸對稱圖形,故A不符合題意;B、不是軸對稱圖形,故B不符合題意;C、不是軸對稱圖形,故C不符合題意;D、是軸對稱圖形,故D符合題意.故選D.【點睛】本題主要考查軸對稱圖形的知識點.確定軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.2.C【分析】根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”進行判斷即可.【詳解】解:A、2+3=5,不能構(gòu)成三角形;B、4+3<8,不能構(gòu)成三角形;C、3+3>4,能夠組成三角形;D、2+4<7,不能構(gòu)成三角形.故選C.【點睛】本題考查三角形的三邊關(guān)系,熟練掌握三角形的性質(zhì)是解題關(guān)鍵.3.C【詳解】∵可以寫成一個完全平方式,∴x2-8x+a=(x-4)2,又(x-4)2=x2-8x+16,∴a=16,故選C.4.C【分析】先通分,再合并,即可得出關(guān)于A、B的方程組,求出方程組的解即可.【詳解】解:==,∵,∴,解得:A=1,B=2,故選:C.【點睛】本題考查了分式的加減和解二元一次方程組,能得出關(guān)于A、B的方程組是解此題的關(guān)鍵.5.A【分析】由于∠C=90°,∠ABC=60°,可以得到∠A=30°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=30°,∴BD=AD=6,再30°角所對的直角邊等于斜邊的一半即可求出結(jié)果.【詳解】解:∵∠C=90°,∠ABC=60°,

∴∠A=30°,

∵BD平分∠ABC,

∴∠CBD=∠ABD=∠A=30°,

∴BD=AD=6,

∴CD=BD=6×=3.

故填空答案:A.【點睛】本題考查的知識點是直角三角形的性質(zhì)和角的平分線的性質(zhì),解題關(guān)鍵是熟記30°直角三角形所對線段是斜邊的一半.6.B【分析】直接利用多項式乘法去括號,進而得出一次項系數(shù)為0,進而得出答案.【詳解】(x+m)(x+2)=x2+(2+m)x+2m∵x+m與x+2的乘積中不含x的一次項,∴2+m=0,故m=﹣2.故選:B.【點睛】本題考查了多項式乘以多項式,正確去括號計算是解題的關(guān)鍵.7.B【分析】可根據(jù):邊長增加后的正方形的面積=原正方形的面積+99,列出方程,求出正方形的邊長.【詳解】解:設(shè)這個正方形的邊長為x,則(x+3)2=x2+99,解得:x=15cm.故選:B.【點睛】本題考查了完全平方公式的知識,對于面積問題應(yīng)熟記各種圖形的面積公式,然后根據(jù)題意列出方程,求出解.8.C【分析】根據(jù)題意,結(jié)合圖形,分兩種情況討論:①AB為等腰△ABC底邊;②AB為等腰△ABC其中的一條腰.【詳解】如圖,分兩種情況討論:①AB為等腰直角△ABC底邊時,符合條件的C點有2個;②AB為等腰直角△ABC其中的一條腰時,符合條件的C點有4個.故選:C.【點睛】本題考查了等腰三角形的判定;解答本題關(guān)鍵是根據(jù)題意,畫出符合實際條件的圖形,再利用數(shù)學(xué)知識來求解.數(shù)形結(jié)合的思想是數(shù)學(xué)解題中很重要的解題思想.9.D【詳解】①根據(jù)作圖的過程可知,AD是∠BAC的平分線.故①正確.②如圖,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分線,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正確.③∵∠1=∠B=30°,∴AD=BD.∴點D在AB的中垂線上.故③正確.④∵如圖,在直角△ACD中,∠2=30°,∴CD=AD.∴BC=CD+BD=AD+AD=AD,S△DAC=AC?CD=AC?AD.∴S△ABC=AC?BC=AC?AD=AC?AD.∴S△DAC:S△ABC.故④正確.綜上所述,正確的結(jié)論是:①②③④,,共有4個.故選D.10.A【解析】∵∠2是?ABC的一個外角,∴∠2=∠B+∠BCA,∵∠1<∠BCA,∴∠B+∠BCA>∠B+∠1,即∠2>∠B+∠1;故選A.11.【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.【詳解】解:0.00123=1.23×10?3.故答案為:1.23×10?3.【點睛】此題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要確定a的值以及n的值.12.120【詳解】試題解析:六邊形的內(nèi)角和為:(6-2)×180°=720°,∴正六邊形的每個內(nèi)角為:=120°.考點:多邊形的內(nèi)角與外角.13.【分析】直接利用完全平方公式分解因式得出答案.【詳解】解:∵代數(shù)式x2+mx+16通過變形可以寫成(x+n)2的形式,∴x2+mx+16=(x±4)2,則.故答案為.【點睛】此題主要考查了公式法分解因式,正確應(yīng)用公式是解題關(guān)鍵.14.【分析】運用同底數(shù)冪乘法逆運算將轉(zhuǎn)化為,再逆用積的乘方公式計算即可.【詳解】解:故答案為:【點睛】本題考查了同底數(shù)冪乘法公式的逆運算和積的乘方公式的逆運算,解答關(guān)鍵是熟練掌握相關(guān)法則進行計算.15.【分析】先去分母得一元二次方程,利用平方根的性質(zhì)解方程可求出x的值,最后檢驗即可得答案.【詳解】去分母得:,移項得:,開平方得:,檢驗:當(dāng)時,,故是原分式方程的增根,當(dāng)時,,故是原分式方程的根,故答案為:【點睛】本題考查解分式方程及平方根,熟練掌握分式方程的解法及平方根的性質(zhì)是解題關(guān)鍵.注意:分式方程最后要檢驗,避免出現(xiàn)增根.16.40【解析】【詳解】根據(jù)木板的形狀,將其“復(fù)原”為一個三角形,依據(jù)三角形的內(nèi)角和定理解答.解:∠C=180﹣∠A﹣∠B=180°﹣100°﹣40°=40°.故答案為40.17.(1);(2);(3)1【分析】(1)根據(jù)乘法分配律計算;

(2)根據(jù)乘法分配律計算;

(3)先約分,化為同分母分式再相加.【詳解】解:(1)原式(2)原式(3)原式【點睛】本題考查實數(shù)的運算,熟練掌握整式運算中乘法分配律的應(yīng)用及分式加減法的運算法則是解題關(guān)鍵.18.(1)見解析;(2)60°【分析】(1)證明△CAE≌△CBD(ASA),可得出結(jié)論;(2)根據(jù)題意得出△CDE為等邊三角形,進而得出∠C的度數(shù).【詳解】(1)∵AE⊥CD于點A,BD⊥CE于點B,∴∠CAE=∠CBD=90°,在△CAE和△CBD中,,∴△CAE≌△CBD(ASA).∴CD=CE;(2)連接DE,∵由(1)可得CE=CD,∵點A為CD的中點,AE⊥CD,∴CE=DE,∴CE=DE=CD,∴△CDE為等邊三角形.∴∠C=60°.【點睛】此題主要考查全等三角形的判定的綜合問題,解題的關(guān)鍵是熟知全等三角形的判定方法及等邊三角形的判定定理.19.(1)見解析;(2)見解析【分析】(1)過點E作EF⊥DA于點F,首先根據(jù)角的平分線上的點到角的兩邊的距離相等可得CE=EF,根據(jù)等量代換可得BE=EF,再根據(jù)角平分線的判定可得AE平分∠BAD;

(2)首先證明Rt△DFE和Rt△DCE可得DC=DF,同理可得AF=AB,再由AD=AF+DF利用等量代換可得結(jié)論;【詳解】(1)證明:過點E作EF⊥DA于點F,

∵∠C=90°,DE平分∠ADC,

∴CE=EF,

∵E是BC的中點,

∴BE=CE,

∴BE=EF,

又∵∠B=90°,EF⊥AD,

∴AE平分∠BAD.

(2)證明:AD=CD+AB,

∵∠C=∠DFE=90°,

∴在Rt△DFE和Rt△DCE中,

∴Rt△DFE和Rt△DCE(HL),

∴DC=DF,

同理AF=AB,

∵AD=AF+DF,

∴AD=CD+AB;【點睛】此題考查角平分線的性質(zhì)和判定,全等三角形的性質(zhì)和判定,解題關(guān)鍵是掌握角平分線的性質(zhì)和判定定理.20.,【分析】先把分子分母因式分解和括號內(nèi)的分式通分,再約分,然后進行同分母的減法運算得到原式,再把x的值代入計算即可.【詳解】解:原式當(dāng)時,原式【點睛】本題考查了分式的化簡計算:先把分式化簡后,再把分式中未知數(shù)對應(yīng)的值代入求出分式的值.在化簡的過程中要注意運算順序和分式的化簡.化簡的最后結(jié)果分子、分母要進行約分,注意運算的結(jié)果要化成最簡分式或整式.21.(1)貨車的速度為80千米/時,小汽車的速度為120千米/時;(2)兩車的距離是40千米.【分析】(1)設(shè)大貨車的速度為x千米/時,則小轎車的速度是1.5x千米/時,根據(jù)“路程都等于360千米,小張的時間-小劉的時間=90分鐘”列方程,求解即可;(2)根據(jù)“兩車距離=小張的路程-小劉的路程”計算即可.【詳解】設(shè)大貨車的速度為x千米/時,則小轎車的速度是1.5x千米/時.根據(jù)題意得:解得:x=80.經(jīng)檢驗x=80為原方程的解.∴1.5x=120.答:貨車的速度為80千米/時,小汽車的速度為120千米/時.(2)3.5×80-2×120=40(千米)答:兩車的距離是40千米.【點睛】本題考查了分式方程的應(yīng)用,解題的關(guān)鍵是:(1)根據(jù)時間=路程÷速度,列出關(guān)于x的分式方程;(2)根據(jù)數(shù)量關(guān)系,列式計算.22.(1)證明見解析;(2)證明見解析.【分析】(1)由AD⊥BC,CE⊥AB,易得∠AFE=∠B,利用全等三角形的判定得△AEF≌△CEB;(2)由全等三角形的性質(zhì)得AF=BC,由等腰三角形的性質(zhì)“三線合一”得BC=2CD,等量代換得出結(jié)論.【詳解】(1)證明:由于AB=AC,故△ABC為等腰三角形,∠ABC=∠ACB;∵AD⊥BC,CE⊥AB,∴∠AEC=∠BEC=90°,∠ADB=90°;∴∠BAD+∠ABC=90°,∠ECB+∠ABC=90°,∴∠BAD=∠ECB,在Rt△AEF和Rt△CEB中∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,所以△AEF≌△CEB(ASA)(2)∵△ABC為等腰三角形,AD⊥BC,故BD=CD,即CB=2CD,又∵△AEF≌△CEB,∴AF=CB=2CD.23.(1)(x﹣2)(x﹣4);(2)①(x﹣y+1)(x﹣y+3);②(m+1)2(m﹣1)(m+3).【分析】(1)根據(jù)材料1,可對進行x2﹣6x+8進行分解因式;(2)①根據(jù)材料2的整體思想,可對(x﹣y)2+4(x﹣y)+3進行分解因式;②根據(jù)材料1、2,可對m(m+2)(m2+2m﹣2)﹣3進行分解因式.【詳解】解:(1)x2﹣6x+8=(x﹣2)(x﹣4);(2)①令A(yù)=x﹣y,則原式=A2+4A+3=(A+1)(A+3),所以(x﹣y)2+4(x﹣y)+3=(x﹣y+1)(x﹣y+3);②令B=m2+2m,則原式=B(B﹣2)﹣3=B2﹣2B﹣3=(B+1)(B﹣3),所以原式=(m2+2m+1)(m2+2m﹣3)=(m+1)2(m﹣1)(m+3).【點睛】本題主要考查因式分解的方法-十字相乘法.24.(1)見解析;(2)△AOD是直角三角形;(3)=125°或110°或140°【分析】(1)由等邊三角形的性質(zhì)可得∠ACB=60°,再根據(jù)全等三角形的性質(zhì)可得OC=CD,∠BCO=∠ACD,可證∠OCD=∠ACB=60°,再根據(jù)等邊三角形的判定即可證得結(jié)論;(2)由全等三角形的性質(zhì)得∠ADC=∠BOC=150°,由(1)中結(jié)論得∠CDO=60°,則有∠ADO=90°,即可得到△AOD的形狀;(3)根據(jù)全等三角形的性質(zhì)和已知可得∠AOD=190°﹣,∠ADO=﹣60°,再根據(jù)等腰三角形的性質(zhì)分類討論即可.【詳解】(1)證明:∵△ABC是等邊三角形,∴∠ACB=60°,∵△BOC≌△ADC,∴OC=CD,∠BCO=∠ACD,∴∠BCO+∠OCA=∠ACD+∠OCA,即∠OCD=∠ACB=60°,∴△COD為等邊三角形;(2)△AOD是直角三角形,理由為:∵△BOC≌△ADC,∴∠ADC=∠BOC=150°,∵△COD為等邊三角形,∴∠CDO=60°,∴∠ADO=∠ADC﹣∠CD0=150°﹣60°=90°,∴△AOD是直角三角形;(3)∵△COD為等邊三角形,∴∠COD=∠CDO=60°,∵∠ADC=∠BOC=,∠AOB=110°,∴∠AOD=360°﹣110°﹣60°﹣=190°﹣,∠ADO=﹣60°

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論