版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第一篇熱點(diǎn)、難點(diǎn)突破篇專題07導(dǎo)數(shù)與隱零點(diǎn)問題(講)真題體驗(yàn)感悟高考1.(2021·全國(guó)·高考真題(理))已知SKIPIF1<0且SKIPIF1<0,函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的單調(diào)區(qū)間;(2)若曲線SKIPIF1<0與直線SKIPIF1<0有且僅有兩個(gè)交點(diǎn),求a的取值范圍.【答案】(1)SKIPIF1<0上單調(diào)遞增;SKIPIF1<0上單調(diào)遞減;(2)SKIPIF1<0.【分析】(1)求得函數(shù)的導(dǎo)函數(shù),利用導(dǎo)函數(shù)的正負(fù)與函數(shù)的單調(diào)性的關(guān)系即可得到函數(shù)的單調(diào)性;(2)方法一:利用指數(shù)對(duì)數(shù)的運(yùn)算法則,可以將曲線SKIPIF1<0與直線SKIPIF1<0有且僅有兩個(gè)交點(diǎn)等價(jià)轉(zhuǎn)化為方程SKIPIF1<0有兩個(gè)不同的實(shí)數(shù)根,即曲線SKIPIF1<0與直線SKIPIF1<0有兩個(gè)交點(diǎn),利用導(dǎo)函數(shù)研究SKIPIF1<0的單調(diào)性,并結(jié)合SKIPIF1<0的正負(fù),零點(diǎn)和極限值分析SKIPIF1<0的圖象,進(jìn)而得到SKIPIF1<0,發(fā)現(xiàn)這正好是SKIPIF1<0,然后根據(jù)SKIPIF1<0的圖象和單調(diào)性得到SKIPIF1<0的取值范圍.【詳解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;SKIPIF1<0上單調(diào)遞減;(2)[方法一]【最優(yōu)解】:分離參數(shù)SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,在SKIPIF1<0內(nèi)SKIPIF1<0,SKIPIF1<0單調(diào)遞增;在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0單調(diào)遞減;SKIPIF1<0,又SKIPIF1<0,當(dāng)SKIPIF1<0趨近于SKIPIF1<0時(shí),SKIPIF1<0趨近于0,所以曲線SKIPIF1<0與直線SKIPIF1<0有且僅有兩個(gè)交點(diǎn),即曲線SKIPIF1<0與直線SKIPIF1<0有兩個(gè)交點(diǎn)的充分必要條件是SKIPIF1<0,這即是SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.[方法二]:構(gòu)造差函數(shù)由SKIPIF1<0與直線SKIPIF1<0有且僅有兩個(gè)交點(diǎn)知SKIPIF1<0,即SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有兩個(gè)解,取對(duì)數(shù)得方程SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有兩個(gè)解.構(gòu)造函數(shù)SKIPIF1<0,求導(dǎo)數(shù)得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增,所以,SKIPIF1<0在SKIPIF1<0內(nèi)最多只有一個(gè)零點(diǎn),不符合題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;所以,函數(shù)SKIPIF1<0的遞增區(qū)間為SKIPIF1<0,遞減區(qū)間為SKIPIF1<0.由于SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,即SKIPIF1<0,由函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)有兩個(gè)零點(diǎn)知SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0的遞減區(qū)間為SKIPIF1<0,遞增區(qū)間為SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),故SKIPIF1<0的解為SKIPIF1<0且SKIPIF1<0.所以,實(shí)數(shù)a的取值范圍為SKIPIF1<0.[方法三]分離法:一曲一直曲線SKIPIF1<0與SKIPIF1<0有且僅有兩個(gè)交點(diǎn)等價(jià)為SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有兩個(gè)不相同的解.因?yàn)镾KIPIF1<0,所以兩邊取對(duì)數(shù)得SKIPIF1<0,即SKIPIF1<0,問題等價(jià)為SKIPIF1<0與SKIPIF1<0有且僅有兩個(gè)交點(diǎn).①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0只有一個(gè)交點(diǎn),不符合題意.②當(dāng)SKIPIF1<0時(shí),取SKIPIF1<0上一點(diǎn)SKIPIF1<0在點(diǎn)SKIPIF1<0的切線方程為SKIPIF1<0,即SKIPIF1<0.當(dāng)SKIPIF1<0與SKIPIF1<0為同一直線時(shí)有SKIPIF1<0得SKIPIF1<0直線SKIPIF1<0的斜率滿足:SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0有且僅有兩個(gè)交點(diǎn).記SKIPIF1<0,令SKIPIF1<0,有SKIPIF1<0.SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增;SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞減;SKIPIF1<0時(shí),SKIPIF1<0最大值為SKIPIF1<0,所當(dāng)SKIPIF1<0且SKIPIF1<0時(shí)有SKIPIF1<0.綜上所述,實(shí)數(shù)a的取值范圍為SKIPIF1<0.[方法四]:直接法SKIPIF1<0.因?yàn)镾KIPIF1<0,由SKIPIF1<0得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞減,不滿足題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增,由SKIPIF1<0得SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞減.因?yàn)镾KIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,兩邊取對(duì)數(shù),得SKIPIF1<0,即SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增,在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0的解為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故實(shí)數(shù)a的范圍為SKIPIF1<0.]【整體點(diǎn)評(píng)】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)曲線和直線的交點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍問題,屬較難試題,方法一:將問題進(jìn)行等價(jià)轉(zhuǎn)化,分離參數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,圖象,利用數(shù)形結(jié)合思想求解.方法二:將問題取對(duì),構(gòu)造差函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值.方法三:將問題取對(duì),分成SKIPIF1<0與SKIPIF1<0兩個(gè)函數(shù),研究對(duì)數(shù)函數(shù)過(guò)原點(diǎn)的切線問題,將切線斜率與一次函數(shù)的斜率比較得到結(jié)論.方法四:直接求導(dǎo)研究極值,單調(diào)性,最值,得到結(jié)論.2.(2019·全國(guó)·高考真題(文))已知函數(shù)f(x)=2sinx-xcosx-x,f′(x)為f(x)的導(dǎo)數(shù).(1)證明:f′(x)在區(qū)間(0,π)存在唯一零點(diǎn);(2)若x∈[0,π]時(shí),f(x)≥ax,求a的取值范圍.【答案】(1)見解析;(2)SKIPIF1<0.【分析】(1)求導(dǎo)得到導(dǎo)函數(shù)后,設(shè)為SKIPIF1<0進(jìn)行再次求導(dǎo),可判斷出當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,從而得到SKIPIF1<0單調(diào)性,由零點(diǎn)存在定理可判斷出唯一零點(diǎn)所處的位置,證得結(jié)論;(2)構(gòu)造函數(shù)SKIPIF1<0,通過(guò)二次求導(dǎo)可判斷出SKIPIF1<0,SKIPIF1<0;分別在SKIPIF1<0,SKIPIF1<0,SKIPIF1<0和SKIPIF1<0的情況下根據(jù)導(dǎo)函數(shù)的符號(hào)判斷SKIPIF1<0單調(diào)性,從而確定SKIPIF1<0恒成立時(shí)SKIPIF1<0的取值范圍.【詳解】(1)SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,解得:SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;在SKIPIF1<0上單調(diào)遞減又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0無(wú)零點(diǎn),即SKIPIF1<0無(wú)零點(diǎn)SKIPIF1<0
SKIPIF1<0,使得SKIPIF1<0又SKIPIF1<0在SKIPIF1<0上單調(diào)遞減
SKIPIF1<0為SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上的唯一零點(diǎn)綜上所述:SKIPIF1<0在區(qū)間SKIPIF1<0存在唯一零點(diǎn)(2)若SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0恒成立令SKIPIF1<0則SKIPIF1<0,SKIPIF1<0由(1)可知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;在SKIPIF1<0上單調(diào)遞減且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上恒成立SKIPIF1<0在SKIPIF1<0上單調(diào)遞增SKIPIF1<0,即SKIPIF1<0,此時(shí)SKIPIF1<0恒成立②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,使得SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減又SKIPIF1<0,SKIPIF1<0SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0恒成立③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0SKIPIF1<0,使得SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增SKIPIF1<0時(shí),SKIPIF1<0,可知SKIPIF1<0不恒成立④當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞減
SKIPIF1<0可知SKIPIF1<0不恒成立綜上所述:SKIPIF1<0【點(diǎn)睛】本題考查利用導(dǎo)數(shù)討論函數(shù)零點(diǎn)個(gè)數(shù)、根據(jù)恒成立的不等式求解參數(shù)范圍的問題.對(duì)于此類端點(diǎn)值恰為恒成立不等式取等的值的問題,通常采用構(gòu)造函數(shù)的方式,將問題轉(zhuǎn)變成函數(shù)最值與零之間的比較,進(jìn)而通過(guò)導(dǎo)函數(shù)的正負(fù)來(lái)確定所構(gòu)造函數(shù)的單調(diào)性,從而得到最值.3.(2019·全國(guó)·高考真題(理))已知函數(shù)SKIPIF1<0.(1)討論f(x)的單調(diào)性,并證明f(x)有且僅有兩個(gè)零點(diǎn);(2)設(shè)x0是f(x)的一個(gè)零點(diǎn),證明曲線y=lnx在點(diǎn)A(x0,lnx0)處的切線也是曲線SKIPIF1<0的切線.【答案】(1)函數(shù)SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上是單調(diào)增函數(shù),證明見解析;(2)證明見解析.【分析】(1)對(duì)函數(shù)SKIPIF1<0求導(dǎo),結(jié)合定義域,判斷函數(shù)的單調(diào)性;(2)先求出曲線SKIPIF1<0在SKIPIF1<0處的切線SKIPIF1<0,然后求出當(dāng)曲線SKIPIF1<0切線的斜率與SKIPIF1<0斜率相等時(shí),證明曲線SKIPIF1<0切線SKIPIF1<0在縱軸上的截距與SKIPIF1<0在縱軸的截距相等即可.【詳解】(1)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,所以SKIPIF1<0,因此函數(shù)SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上是單調(diào)增函數(shù);當(dāng)SKIPIF1<0,時(shí),SKIPIF1<0,而SKIPIF1<0,顯然當(dāng)SKIPIF1<0,函數(shù)SKIPIF1<0有零點(diǎn),而函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有唯一的零點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0必有一零點(diǎn),而函數(shù)SKIPIF1<0在SKIPIF1<0上是單調(diào)遞增,故當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有唯一的零點(diǎn)綜上所述,函數(shù)SKIPIF1<0的定義域SKIPIF1<0內(nèi)有2個(gè)零點(diǎn);(2)因?yàn)镾KIPIF1<0是SKIPIF1<0的一個(gè)零點(diǎn),所以SKIPIF1<0SKIPIF1<0,所以曲線SKIPIF1<0在SKIPIF1<0處的切線SKIPIF1<0的斜率SKIPIF1<0,故曲線SKIPIF1<0在SKIPIF1<0處的切線SKIPIF1<0的方程為:SKIPIF1<0而SKIPIF1<0,所以SKIPIF1<0的方程為SKIPIF1<0,它在縱軸的截距為SKIPIF1<0.設(shè)曲線SKIPIF1<0的切點(diǎn)為SKIPIF1<0,過(guò)切點(diǎn)為SKIPIF1<0切線SKIPIF1<0,SKIPIF1<0,所以在SKIPIF1<0處的切線SKIPIF1<0的斜率為SKIPIF1<0,因此切線SKIPIF1<0的方程為SKIPIF1<0,當(dāng)切線SKIPIF1<0的斜率SKIPIF1<0等于直線SKIPIF1<0的斜率SKIPIF1<0時(shí),即SKIPIF1<0,切線SKIPIF1<0在縱軸的截距為SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,直線SKIPIF1<0的斜率相等,在縱軸上的截距也相等,因此直線SKIPIF1<0重合,故曲線SKIPIF1<0在SKIPIF1<0處的切線也是曲線SKIPIF1<0的切線.總結(jié)規(guī)律預(yù)測(cè)考向(一)規(guī)律與預(yù)測(cè)1.高考對(duì)導(dǎo)數(shù)的考查要求一般有三個(gè)層次:第一層次主要考查求導(dǎo)公式,求導(dǎo)法則與導(dǎo)數(shù)的幾何意義;第二層次是導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用,包括求函數(shù)的單調(diào)區(qū)間、極值、最值等;第三層次是綜合考查,如研究函數(shù)零點(diǎn)、證明不等式、恒成立問題、求參數(shù)等,包括解決應(yīng)用問題,將導(dǎo)數(shù)內(nèi)容和傳統(tǒng)內(nèi)容中有關(guān)不等式、數(shù)列及函數(shù)單調(diào)性有機(jī)結(jié)合,設(shè)計(jì)綜合題.2.涉及導(dǎo)數(shù)與零點(diǎn)問題,主要有:函數(shù)零點(diǎn)個(gè)數(shù)的判斷與證明、根據(jù)函數(shù)的零點(diǎn)個(gè)數(shù)或零點(diǎn)情況求參數(shù)的取值范圍、與零點(diǎn)相關(guān)的不等式恒成立或證明問題等.零點(diǎn)問題中另有一個(gè)比較重要的存在,就是隱零點(diǎn)問題,隱零點(diǎn)就是指一個(gè)函數(shù)SKIPIF1<0,可以判斷它在某個(gè)區(qū)間上有一個(gè)零點(diǎn),但是這個(gè)零點(diǎn)具體是什么卻無(wú)法計(jì)算或根本不需要計(jì)算,只需利用他的存在去解答題目.(二)本專題考向展示考點(diǎn)突破典例分析考向一利用“隱零點(diǎn)”研究極(最)值問題【核心知識(shí)】在利用導(dǎo)數(shù)研究極(最)值問題時(shí),我們往往利用零點(diǎn)的存在性,對(duì)函數(shù)的零點(diǎn)設(shè)而不求,通過(guò)整體代換、構(gòu)造函數(shù)等,再結(jié)合題目條件解決問題.【典例分析】典例1.【多選題】(2022·安徽·合肥一六八中學(xué)高三階段練習(xí))已知函數(shù),若在區(qū)間上有零點(diǎn),則的值可以為(
)A. B. C. D.1【答案】BCD【分析】由函數(shù)在區(qū)間上有零點(diǎn),則,結(jié)合函數(shù)可知點(diǎn)在直線,由可以表示原點(diǎn)到點(diǎn)的距離,問題進(jìn)行轉(zhuǎn)化,然后構(gòu)造新函數(shù)進(jìn)行分析求出的值的范圍.【詳解】設(shè)在區(qū)間上零點(diǎn)為,則,所以點(diǎn)在直線上,由,其中О為坐標(biāo)原點(diǎn).又,記函數(shù),,因?yàn)?,所以在上單調(diào)遞增所以最小值為,所以,故選:BCD.典例2.(2022·江蘇淮安·高三期中)已知函數(shù)(1)求曲線在處的切線方程;(2)已知,求證:存在實(shí)數(shù)使得在處取得最大值,且(3)求證:有唯一零點(diǎn)【答案】(1)(2)證明見解析(3)證明見解析【分析】(1)利用導(dǎo)數(shù)可求得函數(shù)在某一點(diǎn)處的切線;(2)整理函數(shù)解析式,求導(dǎo),構(gòu)造函數(shù),利用其單調(diào)性以及零點(diǎn)存在性定理,可得導(dǎo)數(shù)的性質(zhì),結(jié)合導(dǎo)數(shù)求得最值,可得答案;(3)函數(shù)求導(dǎo),明確其單調(diào)性,結(jié)合零點(diǎn)存在性定理,可得答案.【詳解】(1)由,則,將代入,可得,切線斜率,則,整理可得.(2)由,,,設(shè),,在遞增,,,知有,且在小于0,在大于0,在遞增,在遞減,在處取最大值,.(3),,在上單調(diào)遞減,,又,所以,,,故,且唯一,故函數(shù)有唯一零點(diǎn).【點(diǎn)睛】解決函數(shù)存在唯一零點(diǎn),利用函數(shù)的導(dǎo)數(shù)研究其單調(diào)性,結(jié)合零點(diǎn)存在性定理,可得零點(diǎn)的唯一性,推廣也可求得函數(shù)的零點(diǎn)的個(gè)數(shù);當(dāng)函數(shù)的導(dǎo)數(shù)時(shí)分式函數(shù)時(shí),往往利用其分子構(gòu)造成新函數(shù),通過(guò)研究新函數(shù)的單調(diào)性和最值,可得導(dǎo)數(shù)與零的大小關(guān)系,可得原函數(shù)的單調(diào)性.典例3.(2019·全國(guó)·高考真題(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的導(dǎo)數(shù).證明:(1)SKIPIF1<0在區(qū)間SKIPIF1<0存在唯一極大值點(diǎn);(2)SKIPIF1<0有且僅有2個(gè)零點(diǎn).【答案】(1)見解析;(2)見解析【分析】(1)求得導(dǎo)函數(shù)后,可判斷出導(dǎo)函數(shù)在SKIPIF1<0上單調(diào)遞減,根據(jù)零點(diǎn)存在定理可判斷出SKIPIF1<0,使得SKIPIF1<0,進(jìn)而得到導(dǎo)函數(shù)在SKIPIF1<0上的單調(diào)性,從而可證得結(jié)論;(2)由(1)的結(jié)論可知SKIPIF1<0為SKIPIF1<0在SKIPIF1<0上的唯一零點(diǎn);當(dāng)SKIPIF1<0時(shí),首先可判斷出在SKIPIF1<0上無(wú)零點(diǎn),再利用零點(diǎn)存在定理得到SKIPIF1<0在SKIPIF1<0上的單調(diào)性,可知SKIPIF1<0,不存在零點(diǎn);當(dāng)SKIPIF1<0時(shí),利用零點(diǎn)存在定理和SKIPIF1<0單調(diào)性可判斷出存在唯一一個(gè)零點(diǎn);當(dāng)SKIPIF1<0,可證得SKIPIF1<0;綜合上述情況可證得結(jié)論.【詳解】(1)由題意知:SKIPIF1<0定義域?yàn)椋篠KIPIF1<0且SKIPIF1<0令SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減SKIPIF1<0在SKIPIF1<0上單調(diào)遞減又SKIPIF1<0,SKIPIF1<0SKIPIF1<0,使得SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;在SKIPIF1<0上單調(diào)遞減則SKIPIF1<0為SKIPIF1<0唯一的極大值點(diǎn)即:SKIPIF1<0在區(qū)間SKIPIF1<0上存在唯一的極大值點(diǎn)SKIPIF1<0.(2)由(1)知:SKIPIF1<0,SKIPIF1<0①當(dāng)SKIPIF1<0時(shí),由(1)可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增SKIPIF1<0
SKIPIF1<0在SKIPIF1<0上單調(diào)遞減又SKIPIF1<0SKIPIF1<0為SKIPIF1<0在SKIPIF1<0上的唯一零點(diǎn)②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減又SKIPIF1<0
SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,此時(shí)SKIPIF1<0,不存在零點(diǎn)又SKIPIF1<0SKIPIF1<0,使得SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減又SKIPIF1<0,SKIPIF1<0SKIPIF1<0在SKIPIF1<0上恒成立,此時(shí)不存在零點(diǎn)③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞減SKIPIF1<0在SKIPIF1<0上單調(diào)遞減又SKIPIF1<0,SKIPIF1<0即SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0上單調(diào)遞減SKIPIF1<0SKIPIF1<0在SKIPIF1<0上存在唯一零點(diǎn)④當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0SKIPIF1<0即SKIPIF1<0在SKIPIF1<0上不存在零點(diǎn)綜上所述:SKIPIF1<0有且僅有SKIPIF1<0個(gè)零點(diǎn)【規(guī)律方法】零點(diǎn)問題求解三步曲(1)用零點(diǎn)存在性定理判定導(dǎo)函數(shù)零點(diǎn)的存在性,列出零點(diǎn)方程f′(x0)=0,并結(jié)合f(x)的單調(diào)性得到零點(diǎn)的取值范圍.(2)以零點(diǎn)為分界點(diǎn),說(shuō)明導(dǎo)函數(shù)f′(x)的正負(fù),進(jìn)而得到f(x)的最值表達(dá)式.(3)將零點(diǎn)方程適當(dāng)變形,整體代入最值式子進(jìn)行化簡(jiǎn)證明,有時(shí)(1)中的零點(diǎn)范圍還可以適當(dāng)縮小.考向二利用“隱零點(diǎn)”確定參數(shù)取值范圍【核心知識(shí)】利用零點(diǎn)存在性原理可以估算出隱零點(diǎn)的大小范圍,然后再用隱零點(diǎn)的范圍去估計(jì)所求函數(shù)(參數(shù))的范圍.【典例分析】典例4.(2022·河南南陽(yáng)·高三期中(理))若方程SKIPIF1<0存在唯一實(shí)根,則實(shí)數(shù)SKIPIF1<0的取值范圍是_____.【答案】SKIPIF1<0【分析】方程SKIPIF1<0存在唯一實(shí)根,則SKIPIF1<0存在唯一實(shí)根,則函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0有唯一的交點(diǎn),利用導(dǎo)數(shù)分析SKIPIF1<0的單調(diào)性,并在同一坐標(biāo)系中做出SKIPIF1<0與函數(shù)SKIPIF1<0的圖象,即可求解【詳解】方程SKIPIF1<0存在唯一實(shí)根,則SKIPIF1<0存在唯一實(shí)根,令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0令SKIPIF1<0,注意到SKIPIF1<0,則SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0;所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;又SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;所以SKIPIF1<0的大致圖象為:由SKIPIF1<0存在唯一實(shí)根,則函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0有唯一的交點(diǎn),由圖象可知SKIPIF1<0或SKIPIF1<0時(shí)滿足條件,所以方程SKIPIF1<0存在唯一實(shí)根時(shí),實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0故答案為:SKIPIF1<0典例5.(2022·吉林·東北師大附中模擬預(yù)測(cè))已知.(1)若在處的切線的斜率是,求當(dāng)在恒成立時(shí)的的取值范圍;(2)設(shè),當(dāng)時(shí)有唯一零點(diǎn),求a的取值范圍.【答案】(1);(2).【分析】(1)根據(jù)導(dǎo)數(shù)的幾何意義,求得參數(shù);再利用導(dǎo)數(shù)求解在區(qū)間上的最小值,即可求得參數(shù)的范圍;(2)對(duì)參數(shù)分類討論,當(dāng)時(shí),利用導(dǎo)數(shù)研究其單調(diào)性,即可判斷零點(diǎn)個(gè)數(shù);當(dāng)時(shí),根據(jù),再證明,即可求得此時(shí)的零點(diǎn)個(gè)數(shù),再結(jié)合題意進(jìn)行取舍即可.【詳解】(1),則令,則恒成立,在上單調(diào)遞增,當(dāng)時(shí),,即恒成立,在上單調(diào)遞增,恒成立,的取值范圍是(2),①當(dāng)時(shí)在上單調(diào)遞增,,存在使得,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增又,故存在唯一的使得,滿足題意;②當(dāng)時(shí),由可得,令,則,當(dāng)時(shí),,故在上單調(diào)遞增,則,則在上恒成立,故在上無(wú)零點(diǎn).綜上所述,a的取值范圍是.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查導(dǎo)數(shù)的幾何意義,以及利用導(dǎo)數(shù)處理恒成立問題和零點(diǎn)問題;其中第二問處理的關(guān)鍵是在當(dāng)時(shí),進(jìn)行適度的放縮,屬綜合困難題.典例6.(2022·甘肅·靖遠(yuǎn)縣第四中學(xué)高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0是SKIPIF1<0的極值點(diǎn),求SKIPIF1<0的單調(diào)區(qū)間;(2)若關(guān)于SKIPIF1<0的方程SKIPIF1<0恰有一個(gè)解,求a的取值范圍.【答案】(1)單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0;(2)SKIPIF1<0【分析】(1)求出函數(shù)的導(dǎo)函數(shù),依題意SKIPIF1<0,即可求出SKIPIF1<0的值,再利用導(dǎo)數(shù)求出函數(shù)的單調(diào)區(qū)間;(2)求出函數(shù)的導(dǎo)函數(shù)SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,利用導(dǎo)數(shù)說(shuō)明SKIPIF1<0的單調(diào)性,由零點(diǎn)存在性定理可得存在SKIPIF1<0使得SKIPIF1<0,即可得到SKIPIF1<0的單調(diào)性,從而求出SKIPIF1<0的最小值SKIPIF1<0,依題意可得SKIPIF1<0,即可求出SKIPIF1<0的值,從而得解.(1)解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0是SKIPIF1<0的極值點(diǎn),所以SKIPIF1<0,解得SKIPIF1<0,經(jīng)檢驗(yàn)符合題意,所以SKIPIF1<0SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,即SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0;(2)解:顯然SKIPIF1<0,又SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,SKIPIF1<0,所以存在SKIPIF1<0使得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以當(dāng)SKIPIF1<0時(shí)SKIPIF1<0取得最小值,由SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,因?yàn)殛P(guān)于SKIPIF1<0的方程SKIPIF1<0恰有一個(gè)解,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)等號(hào)成立,由SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0的取值范圍為SKIPIF1<0;【方法點(diǎn)睛】導(dǎo)函數(shù)中常用的兩種常用的轉(zhuǎn)化方法:一是利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性,常化為不等式恒成立問題.注意分類討論與數(shù)形結(jié)合思想的應(yīng)用;二是函數(shù)的零點(diǎn)、不等式證明常轉(zhuǎn)化為函數(shù)的單調(diào)性、極(最)值問題處理.【總結(jié)提升】已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過(guò)解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,進(jìn)而構(gòu)造兩個(gè)函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解考向三利用“隱零點(diǎn)”完成不等式恒成立或證明問題【核心知識(shí)】1.不等式恒成立問題常見方法:①分離參數(shù)恒成立(即可)或恒成立(即可);②數(shù)形結(jié)合(圖象在上方即可);③討論最值或恒成立;④討論參數(shù),排除不合題意的參數(shù)范圍,篩選出符合題意的參數(shù)范圍.2.含參數(shù)的不等式恒成立的處理方法:①的圖象永遠(yuǎn)落在圖象的上方;②構(gòu)造函數(shù)法,一般構(gòu)造,;③參變分離法,將不等式等價(jià)變形為,或,進(jìn)而轉(zhuǎn)化為求函數(shù)的最值.3.利用參變量分離法求解函數(shù)不等式恒(能)成立,可根據(jù)以下原則進(jìn)行求解:(1),;(2),;(3),;(4),.【典例分析】典例7.(2022·浙江省新昌中學(xué)高三期中)若存在SKIPIF1<0使對(duì)于任意SKIPIF1<0不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】變形為SKIPIF1<0,由題意知直線SKIPIF1<0恒位于SKIPIF1<0的圖象上方,SKIPIF1<0的圖象下方,SKIPIF1<0代表直線SKIPIF1<0在SKIPIF1<0軸上的截距,當(dāng)直線變化時(shí)觀察SKIPIF1<0取得小值時(shí)滿足的條件.【詳解】令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0為增函數(shù),SKIPIF1<0為減函數(shù),且SKIPIF1<0,在SKIPIF1<0時(shí)的圖象如圖所示.令SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,所以存在SKIPIF1<0使得SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0為增函數(shù),當(dāng)SKIPIF1<0為減函數(shù),當(dāng)SKIPIF1<0時(shí)的圖象如圖所示.由題意得SKIPIF1<0,如圖,當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0恒位于SKIPIF1<0的圖象上方,SKIPIF1<0的圖象下方,SKIPIF1<0代表直線SKIPIF1<0在SKIPIF1<0軸上的截距,當(dāng)直線變化時(shí)觀察得當(dāng)直線過(guò)SKIPIF1<0且與曲線SKIPIF1<0相切時(shí),SKIPIF1<0最小.設(shè)切點(diǎn)為SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0而當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0為增函數(shù),所以SKIPIF1<0有唯一的零點(diǎn)1,所以SKIPIF1<0,此時(shí)直線方程為SKIPIF1<0,故SKIPIF1<0.故選:D【點(diǎn)睛】不等式恒成立求參數(shù)范圍時(shí)常用的方法:①完全分離參數(shù),此法比較簡(jiǎn)單,分離后只需研究不含參函數(shù)的最值即可;②半分離參數(shù),將參數(shù)留在一個(gè)形式比較簡(jiǎn)單的函數(shù)中,如一次函數(shù)或二次函數(shù),另一邊的函數(shù)可以是稍微復(fù)雜一點(diǎn)的不含參函數(shù),將不等式恒成立問題轉(zhuǎn)化為兩函數(shù)圖象位置關(guān)系求解;③不分離參數(shù),含參討論,常常比較復(fù)雜要用導(dǎo)數(shù)研究最值.典例8.(2022·河北·高三期中)已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的單調(diào)區(qū)間;(2)記函數(shù)SKIPIF1<0,若SKIPIF1<0恒成立,試求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,在區(qū)間SKIPIF1<0上單調(diào)遞減(2)SKIPIF1<0【分析】(1)由題意得SKIPIF1<0,令SKIPIF1<0求出零點(diǎn),即可得SKIPIF1<0的單調(diào)區(qū)間;(2)SKIPIF1<0恒成立,轉(zhuǎn)化為SKIPIF1<0恒成立,令SKIPIF1<0,求導(dǎo)后,轉(zhuǎn)化成兩個(gè)函數(shù)的交點(diǎn)問題討論函數(shù)單調(diào)性,即可求出實(shí)數(shù)SKIPIF1<0的取值范圍.【詳解】(1)解:由題意得函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0若SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,在區(qū)間SKIPIF1<0上單調(diào)遞減;(2)解:若SKIPIF1<0恒成立,則SKIPIF1<0,整理得SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,可知兩個(gè)函數(shù)均過(guò)定點(diǎn)SKIPIF1<0,若SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0為SKIPIF1<0的切線,切點(diǎn)為SKIPIF1<0,①當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,不在定義域,不合題意;②當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),在區(qū)間SKIPIF1<0,恒有SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0,則SKIPIF1<0,符合題意;③當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),設(shè)零點(diǎn)為SKIPIF1<0,則SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0且SKIPIF1<0,與SKIPIF1<0矛盾;綜上所述,實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0【點(diǎn)睛】導(dǎo)函數(shù)中常用的兩種常用的轉(zhuǎn)化方法:一是利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性,?;癁椴坏仁胶愠闪栴}.注意分類討論與數(shù)形結(jié)合思想的應(yīng)用;二是函數(shù)的零點(diǎn)、不等式證明常轉(zhuǎn)化為函數(shù)的單調(diào)性、極(最)值問題處理.典例9.(2022·江蘇常州·高三期中)已知函數(shù),,.(1)若在x=0處的切線與在x=1處的切線相同,求實(shí)數(shù)a的值;(2)令,直線y=m與函數(shù)的圖象有兩個(gè)不同的交點(diǎn),交點(diǎn)橫坐標(biāo)分別為,,證明:.【答案】(1)a=1(2)證明見解析【分析】(1)由于在x=0處的切線與在x=1處的切線相同,即可.(2)本問題為極值點(diǎn)偏移問題,可轉(zhuǎn)化為單變量的不等式證明,構(gòu)造函數(shù),利用導(dǎo)數(shù)證明即可.【詳解】(1),.,,1-a=a-1,a=1.檢驗(yàn)a=1時(shí)兩個(gè)函數(shù)切線方程都是y=1.(2),x>0,令,則,∴在遞增,,,因?yàn)楹瘮?shù)連續(xù)不間斷,所以存在唯一實(shí)數(shù),,,從而在遞減,遞增.不妨設(shè),則,當(dāng)時(shí),.當(dāng),則,,在遞增,,,令,,令,,令,,,,在遞減,因?yàn)?,,,在遞增,,所以在遞減,所以,即,即,因?yàn)?,,在遞增,所以,所以.綜上可得,.【點(diǎn)睛】導(dǎo)數(shù)中常用的兩種轉(zhuǎn)化方法:一是利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性,轉(zhuǎn)化為不等式恒成立問題,注意分類討論與數(shù)形結(jié)合思想的應(yīng)用;二是函數(shù)的零點(diǎn),不等式證明常轉(zhuǎn)化為函數(shù)的單調(diào)性,極(最)值問題處理.典例10.(2022·河南·新安縣第一高級(jí)中學(xué)高三開學(xué)考試(理))(1)證明不等式:(第一問必須用隱零點(diǎn)解決,否則不給分);(2)已知函數(shù)有兩個(gè)零點(diǎn).求a的取值范圍.(第二問必須用分段討論解決,否則不給分)【答案】(1)證明見解析;(2).【分析】(1)根據(jù)給定條件,構(gòu)造函數(shù),借助導(dǎo)數(shù)探討函數(shù)最小值為正即可推理作答.(2)求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)分類討論函數(shù)的單調(diào)性、零點(diǎn)情況作答.【詳解】(1)令函數(shù),,求導(dǎo)得:,顯然函數(shù)在上單調(diào)遞增,而,,則存在,使得,即,有,當(dāng)時(shí),,當(dāng)時(shí),,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,,所以.(2)函數(shù)定義域R,求導(dǎo)得,當(dāng)時(shí),由得,,由得,,即函數(shù)在上遞減,在上遞增,,而,即存在,使得,則函數(shù)在上有唯一零點(diǎn),取且,則,即存在,使得,則函數(shù)在上有唯一零點(diǎn),因此當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),當(dāng)時(shí),函數(shù)只有一個(gè)零點(diǎn)2,當(dāng)時(shí),若,當(dāng)或時(shí),,當(dāng)時(shí),,即有在上單調(diào)遞增,在上單調(diào)遞減,又,,因此函數(shù)在上沒有零點(diǎn),在上最多一個(gè)零點(diǎn),即函數(shù)最多一個(gè)零點(diǎn),若,恒有,即函數(shù)在R上單調(diào)遞增,函數(shù)最多一個(gè)零點(diǎn),若,當(dāng)或時(shí),,當(dāng)時(shí),,即有在上單調(diào)遞增,在上單調(diào)遞減,又,,當(dāng)時(shí),,因此函數(shù)在上沒有零點(diǎn),在上最多一個(gè)零點(diǎn),即函數(shù)最多一個(gè)零點(diǎn),綜上得,當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),當(dāng)時(shí),函數(shù)最多一個(gè)零點(diǎn),所以a的取值范圍是.典例11.(2022·重慶·高三階段練習(xí))已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的極值;(2)若SKIPIF1<0有兩個(gè)相異的實(shí)根SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)極小值SKIPIF1<0,無(wú)極大值(2)證明見解析【分析】(1)通過(guò)二次求導(dǎo)確定SKIPIF1<0的導(dǎo)函數(shù)有唯一零點(diǎn),進(jìn)而確定SKIPIF1<0的單調(diào)區(qū)間以及極值;(2)先將題中等式變形為SKIPIF1<0,通過(guò)構(gòu)造函數(shù)SKIPIF1<0有兩個(gè)不同零點(diǎn)確定參數(shù)m的范圍,再將方程SKIPIF1<0的兩相異實(shí)根SKIPIF1<0代入,并令SKIPIF1<0,將原不等式中SKIPIF1<0和m均替換為t表示,最后構(gòu)造關(guān)于t的函數(shù)SKIPIF1<0,利用求導(dǎo)判斷不等式成立即可.【詳解】(1)因?yàn)镾KIPIF1<0所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,又因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞增,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得極小值SKIPIF1<0無(wú)極大值.(2)因?yàn)镾KIPIF1<0有兩個(gè)相異實(shí)根,即SKIPIF1<0有兩個(gè)相異實(shí)根,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞增,因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0,所以SKIPIF1<0因?yàn)镾KIPIF1<0有兩個(gè)相異實(shí)根SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0又因?yàn)镾KIPIF1<0,要證SKIPIF1<0,只需證SKIPIF1<0,因?yàn)镾KIPIF1<0,所以只需證SKIPIF1<0.即證SKIPIF1<0,因?yàn)镾KIPIF1<0,所以只需證SKIPIF1<0,即證SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立.所以SKIPIF1<0.【點(diǎn)睛】本題主要考查雙變量問題,難度較大,解題關(guān)鍵在于通過(guò)實(shí)根建立方程,再借助換元將雙變量轉(zhuǎn)化為單變量,進(jìn)而構(gòu)造函數(shù)將恒成立問題轉(zhuǎn)化為最值問題,求導(dǎo)確定單調(diào)性,使問題得到解決.典例12.(2022·上海市進(jìn)才中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0在SKIPIF1<0上有解,求SKIPIF1<0的取值范圍;(2)若SKIPIF1<0,證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立;(3)若SKIPIF1<0恰有三個(gè)不同的根,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析(3)證明見解析【分析】(1)常數(shù)分離法,轉(zhuǎn)化為SKIPIF1<0有解,用導(dǎo)數(shù)求SKIPIF1<0的最小值即可;(2)即證SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 冀教版四年級(jí)下冊(cè)數(shù)學(xué)教案
- 農(nóng)村環(huán)境整治與生態(tài)建設(shè)
- 焊接作業(yè)工藝流程標(biāo)準(zhǔn)化與優(yōu)化方案
- 生產(chǎn)的火災(zāi)危險(xiǎn)性分類標(biāo)準(zhǔn)
- 高一化學(xué)教案:專題第二單元第二課時(shí)乙酸酯
- 2024屆遼寧省大連海灣某中學(xué)高考仿真卷化學(xué)試卷含解析
- 2024高中物理章末質(zhì)量評(píng)估四含解析新人教版選修1-1
- 2024高中語(yǔ)文略讀課文第8課楊振寧:合璧中西科學(xué)文化的驕子課堂練習(xí)含解析新人教版選修中外傳記蚜
- 2024高中語(yǔ)文第五單元散而不亂氣脈中貫自主賞析祭十二郎文學(xué)案新人教版選修中國(guó)古代詩(shī)歌散文欣賞
- 2024高中語(yǔ)文精讀課文二第5課1達(dá)爾文:興趣與恒心是科學(xué)發(fā)現(xiàn)的動(dòng)力一作業(yè)含解析新人教版選修中外傳記蚜
- 《中國(guó)之最課件》課件
- 電力工程施工人員培訓(xùn)方案
- 代理記賬有限公司簡(jiǎn)介(5個(gè)范本)
- 校園物業(yè)管理層培訓(xùn)課件
- 安全生產(chǎn)培訓(xùn)資料-20220703152820
- 3-U9C操作培訓(xùn)-MRP基礎(chǔ)
- 2024至2030年中國(guó)銅制裝飾材料行業(yè)投資前景及策略咨詢研究報(bào)告
- 中金公司在線測(cè)評(píng)真題
- 高中英語(yǔ)新課程標(biāo)準(zhǔn)解讀課件
- 2024供應(yīng)商大會(huì)策劃方案
- 2024小學(xué)語(yǔ)文六年級(jí)上冊(cè)第四單元:大單元整體教學(xué)課件
評(píng)論
0/150
提交評(píng)論