版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
試卷第=page11頁,共=sectionpages33頁專題17等式與不等式綜合問題(單選+填空)一、單選題1.(2023秋·江蘇揚(yáng)州·高三儀征中學(xué)校聯(lián)考期末)已知SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.9 B.10 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由“1”的妙用和基本不等式可求得結(jié)果.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),等號(hào)成立.結(jié)合SKIPIF1<0可知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0最小值SKIPIF1<0.故選:D.2.(2023春·浙江寧波·高三校聯(lián)考階段練習(xí))非零實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0成等差數(shù)列,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.3 D.SKIPIF1<0【答案】B【分析】根據(jù)SKIPIF1<0成等差數(shù)列,可將SKIPIF1<0用SKIPIF1<0表示,再將所求化簡(jiǎn),利用基本不等式即可得解.【詳解】因?yàn)镾KIPIF1<0成等差數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),取等號(hào),所以SKIPIF1<0的最小值為SKIPIF1<0.故選:B.3.(2023秋·廣東潮州·高三統(tǒng)考期末)正實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,且不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)基本不等式“1”的妙用可得SKIPIF1<0的最小值為4,再根據(jù)含參不等式恒成立解一元二次不等式,即可得實(shí)數(shù)SKIPIF1<0的取值范圍.【詳解】正實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0且SKIPIF1<0時(shí),等號(hào)成立,則SKIPIF1<0時(shí),SKIPIF1<0取到最小值4,要使不等式SKIPIF1<0恒成立,即SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C.4.(2023春·湖南長沙·高三湖南師大附中??茧A段練習(xí))已知函數(shù)SKIPIF1<0,正數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用SKIPIF1<0可得SKIPIF1<0,由此可化簡(jiǎn)所求式子,結(jié)合基本不等式可求得最小值.【詳解】SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0由SKIPIF1<0得:SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào)),則SKIPIF1<0的最小值為SKIPIF1<0.故選:B.5.(2023·湖南岳陽·統(tǒng)考一模)已知正實(shí)數(shù)x,y滿足SKIPIF1<0,則下列不等式恒成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用特殊值判斷AC,利用不等式性質(zhì)及指數(shù)函數(shù)單調(diào)性判斷B,根據(jù)排除法判斷D.【詳解】取SKIPIF1<0,則SKIPIF1<0不成立,故A錯(cuò)誤;由SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故B錯(cuò)誤;取SKIPIF1<0時(shí),SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,故C錯(cuò)誤;由ABC錯(cuò)誤,排除法知,故D正確.故選:D6.(2023·山東菏澤·統(tǒng)考一模)設(shè)實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】分為SKIPIF1<0與SKIPIF1<0,去掉絕對(duì)值后,根據(jù)“1”的代換,化簡(jiǎn)后分別根據(jù)基本不等式,即可求解得出答案.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí)等號(hào)成立,此時(shí)有最小值SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí)等號(hào)成立,此時(shí)有最小值SKIPIF1<0.所以,SKIPIF1<0的最小值為SKIPIF1<0.故選:A.7.(2023·山東濰坊·??家荒#┤粽龑?shí)數(shù)a,b滿足SKIPIF1<0,且SKIPIF1<0,則下列不等式一定成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)函數(shù)單調(diào)性及SKIPIF1<0得到SKIPIF1<0或SKIPIF1<0,分別討論兩種情況下四個(gè)選項(xiàng)是否正確,A選項(xiàng)可以用對(duì)數(shù)函數(shù)單調(diào)性得到,B選項(xiàng)可以用作差法,C選項(xiàng)用作差法及指數(shù)函數(shù)單調(diào)性進(jìn)行求解,D選項(xiàng),需要構(gòu)造函數(shù)進(jìn)行求解.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0為單調(diào)遞增函數(shù),故SKIPIF1<0,由于SKIPIF1<0,故SKIPIF1<0,或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0;SKIPIF1<0,故SKIPIF1<0;SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0;SKIPIF1<0,SKIPIF1<0;故ABC均錯(cuò)誤;D選項(xiàng),SKIPIF1<0,兩邊取自然對(duì)數(shù),SKIPIF1<0,因?yàn)椴还躍KIPIF1<0,還是SKIPIF1<0,均有SKIPIF1<0,所以SKIPIF1<0,故只需證SKIPIF1<0即可,設(shè)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),則SKIPIF1<0,令SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0且SKIPIF1<0上恒成立,故SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)單調(diào)遞減,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,結(jié)論得證,D正確故選:D8.(2023秋·河北邢臺(tái)·高三統(tǒng)考期末)若SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0的最小值為SKIPIF1<0 B.SKIPIF1<0的最小值為SKIPIF1<0C.SKIPIF1<0的最小值為16 D.SKIPIF1<0沒有最小值【答案】A【分析】先將題意整理成SKIPIF1<0,然后利用基本不等式可得到SKIPIF1<0,最后檢驗(yàn)SKIPIF1<0是否成立即可【詳解】由SKIPIF1<0,得SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立.由SKIPIF1<0得SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0,則由SKIPIF1<0,得SKIPIF1<0在SKIPIF1<0上至少一個(gè)零點(diǎn),此時(shí)SKIPIF1<0,故存在SKIPIF1<0,使得不等式SKIPIF1<0中的等號(hào)成立,故SKIPIF1<0的最小值為SKIPIF1<0.故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)睛:這道題關(guān)鍵的地方在于檢驗(yàn)SKIPIF1<0是否成立,需要構(gòu)造SKIPIF1<0,并結(jié)合零點(diǎn)存在定理進(jìn)行驗(yàn)證9.(2023秋·河北邯鄲·高三統(tǒng)考期末)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.10 B.9 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由已知,可設(shè)SKIPIF1<0,SKIPIF1<0,利用換底公式表示出SKIPIF1<0,SKIPIF1<0帶入SKIPIF1<0中,得到m,n的等量關(guān)系,然后利用“1”的代換借助基本不等式即可求解最值.【詳解】由已知,令SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,代入SKIPIF1<0得:SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí)等號(hào)成立.SKIPIF1<0的最小值為SKIPIF1<0.故選:C.10.(2023春·浙江紹興·高三統(tǒng)考開學(xué)考試)對(duì)于任意實(shí)數(shù)SKIPIF1<0及SKIPIF1<0,均有SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先將除了SKIPIF1<0以外的量SKIPIF1<0看成常量,運(yùn)用基本不等式先求出左邊表達(dá)式的最小值,然后利用分離參數(shù),結(jié)合對(duì)勾函數(shù)性質(zhì)求解.【詳解】由基本不等式,SKIPIF1<0,故只需要SKIPIF1<0即可,即對(duì)于任意的SKIPIF1<0,SKIPIF1<0恒成立,等價(jià)于對(duì)任意的SKIPIF1<0,SKIPIF1<0,或SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),由于SKIPIF1<0,原式可變形為SKIPIF1<0,記SKIPIF1<0,根據(jù)對(duì)勾函數(shù)性質(zhì)SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,于是SKIPIF1<0在SKIPIF1<0上遞增,此時(shí)SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),由于SKIPIF1<0,原式可變形為SKIPIF1<0,記SKIPIF1<0,根據(jù)對(duì)勾函數(shù)性質(zhì)SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,于是SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,當(dāng)SKIPIF1<0,當(dāng)SKIPIF1<0,注意到SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0.綜上,SKIPIF1<0.故選:D11.(2023·浙江·統(tǒng)考一模)若SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先把已知整理成SKIPIF1<0的形式,再把等式的右邊利用柯西不等式進(jìn)行放縮,得到關(guān)于SKIPIF1<0的一元二次不等式進(jìn)行求解.【詳解】由已知SKIPIF1<0整理得SKIPIF1<0,由柯西不等式得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)取等號(hào),所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:C.二、填空題12.(2023秋·江蘇揚(yáng)州·高三校聯(lián)考期末)已知關(guān)于SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0時(shí),關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立,則SKIPIF1<0的最小值為______.【答案】SKIPIF1<0【分析】根據(jù)不等式分類討論分析可知,SKIPIF1<0為SKIPIF1<0的零點(diǎn),可得方程,運(yùn)算整理結(jié)合基本不等式求值.【詳解】SKIPIF1<0時(shí),關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立,SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0;由SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0為SKIPIF1<0的零點(diǎn),∴SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立.故答案為:SKIPIF1<0.13.(2023秋·江蘇揚(yáng)州·高三??计谀┮阎猄KIPIF1<0,SKIPIF1<0,SKIPIF1<0是正實(shí)數(shù),且SKIPIF1<0,則SKIPIF1<0最小值為__________.【答案】SKIPIF1<0【分析】由于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是正實(shí)數(shù),且SKIPIF1<0,所以先結(jié)合基本不等式“1”的代換求SKIPIF1<0的最小值,得SKIPIF1<0,則SKIPIF1<0,再根據(jù)基本不等式湊項(xiàng)法求SKIPIF1<0的最小值,即可求得SKIPIF1<0的最小值.【詳解】解:SKIPIF1<0,由于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是正實(shí)數(shù),且SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0時(shí)等號(hào)成立,則SKIPIF1<0的最小值為SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,則SKIPIF1<0最小值為SKIPIF1<0.故答案為:SKIPIF1<0.14.(2023春·江蘇揚(yáng)州·高三揚(yáng)州市新華中學(xué)??奸_學(xué)考試)若曲線SKIPIF1<0在點(diǎn)SKIPIF1<0SKIPIF1<0處的切線也是曲線SKIPIF1<0的切線,則SKIPIF1<0的最小值為_____.【答案】SKIPIF1<0【分析】由兩條曲線的公切線斜率分別等于各曲線上切點(diǎn)處的導(dǎo)數(shù)值,以及各曲線上切點(diǎn)分別滿足切線方程來列方程組,得到SKIPIF1<0與SKIPIF1<0滿足的關(guān)系式,將原式中的SKIPIF1<0替換,再利用基本不等式求最小值即可.【詳解】曲線SKIPIF1<0在點(diǎn)A處的切線可寫作SKIPIF1<0設(shè)該切線在曲線SKIPIF1<0上的切點(diǎn)為SKIPIF1<0,則有SKIPIF1<0,消去t得SKIPIF1<0則SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取得該最小值.故答案為:SKIPIF1<0.15.(2023春·浙江杭州·高三浙江省杭州第二中學(xué)??茧A段練習(xí))已知正實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值是___________.【答案】SKIPIF1<0【分析】根據(jù)不等式特征可通過構(gòu)造函數(shù)SKIPIF1<0,利用函數(shù)單調(diào)性解不等式可得SKIPIF1<0,再根據(jù)基本不等式即可求得SKIPIF1<0的最小值是SKIPIF1<0.【詳解】由題意可得將不等式變形成SKIPIF1<0;又因?yàn)镾KIPIF1<0都是正數(shù),所以SKIPIF1<0;可構(gòu)造函數(shù)SKIPIF1<0,易知函數(shù)為增函數(shù),由SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0,根據(jù)函數(shù)單調(diào)性可得SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0取等號(hào),因此SKIPIF1<0的最小值是SKIPIF1<0.故答案為:SKIPIF1<016.(2023·浙江·永嘉中學(xué)校聯(lián)考模擬預(yù)測(cè))已知實(shí)數(shù)SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0的最小值是______.【答案】9【分析】將已知條件SKIPIF1<0通過恒等變形,再利用基本不等式即可求解.【詳解】由已知條件得SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立.故答案為:9.17.(2023春·廣東江門·高三校聯(lián)考開學(xué)考試)已知正數(shù)x,y,z滿足SKIPIF1<0,當(dāng)SKIPIF1<0取最大值時(shí),SKIPIF1<0的最小值為______.【答案】SKIPIF1<0##SKIPIF1<0【分析】由條件化簡(jiǎn)SKIPIF1<0,結(jié)合基本不等式求其最大值,確定取最大值的條件,再結(jié)合二次函數(shù)性質(zhì)求SKIPIF1<0的最小值.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0時(shí)等號(hào)成立,所以當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0取最大值SKIPIF1<0,所以當(dāng)SKIPIF1<0取最大值時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取最小值SKIPIF1<0.故答案為:SKIPIF1<0.18.(2023秋·廣東·高三校聯(lián)考期末)已知a,b都是正數(shù),則SKIPIF1<0的最小值是______.【答案】2【分析】設(shè)SKIPIF1<0,SKIPIF1<0,解出SKIPIF1<0,SKIPIF1<0,代入化簡(jiǎn)得SKIPIF1<0,利用基本不等式即可求出最值.【詳解】因?yàn)镾KIPIF1<0均為正實(shí)數(shù),故設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0聯(lián)立解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),故答案為:2.19.(2023秋·湖南長沙·高三校考階段練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,若存在兩項(xiàng)SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的最小值為_____________.【答案】SKIPIF1<0【分析】先根據(jù)SKIPIF1<0可得數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,即可得到SKIPIF1<0,結(jié)合SKIPIF1<0可得SKIPIF1<0,再結(jié)合基本不等式求解即可.【詳解】由SKIPIF1<0,得SKIPIF1<0,兩式相減得SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,即SKIPIF1<0.又SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào).所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.20.(2023春·湖北荊州·高三沙市中學(xué)??茧A段練習(xí))若SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0的最小值為m,SKIPIF1<0的最大值為n,則mn為___________,【答案】SKIPIF1<0【分析】根據(jù)條件等式利用基本不等式中“1”的妙用可求得SKIPIF1<0,由SKIPIF1<0并結(jié)合SKIPIF1<0即可求得SKIPIF1<0,便可得出SKIPIF1<0.【詳解】由SKIPIF1<0可得SKIPIF1<0,由SKIPIF1<0可得,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立;即SKIPIF1<0的最小值為SKIPIF1<0;SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0;當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立;即SKIPIF1<0的最大值為SKIPIF1<0;所以SKIPIF1<0.故答案為:SKIPIF1<021.(2023春·湖北武漢·高三華中師大一附中??茧A段練習(xí))已知正數(shù)a,b滿足SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0【分析】利用基本不等式知SKIPIF1<0,令SKIPIF1<0,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性可知SKIPIF1<0,進(jìn)而可得SKIPIF1<0,結(jié)合已知可得SKIPIF1<0,由取等條件即可求解.【詳解】因?yàn)閍,b都為正數(shù),所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立.構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0,求導(dǎo)SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;可知SKIPIF1<0在SKIPIF1<0處取得最大值,故SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0故答案為:SKIPIF1<0【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查利用基本不等式及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性證明不等式,解題的關(guān)鍵是構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0,從而證得SKIPIF1<0,再結(jié)合基本不等式及取等條件即可求解,考查學(xué)生的轉(zhuǎn)化能力與運(yùn)算求解能力,屬于難題.22.(2023·山東濟(jì)寧·統(tǒng)考一模)已知函數(shù)SKIPIF1<0且SKIPIF1<0的圖象過定點(diǎn)A,且點(diǎn)A在直線SKIPIF1<0上,則SKIPIF1<0的最小值是______.【答案】SKIPIF1<0【分析】求出函數(shù)所過的定點(diǎn)SKIPIF1<0,則有SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,化簡(jiǎn)整理,分離常數(shù)再結(jié)合基本不等式求解即可.【詳解】函數(shù)SKIPIF1<0且SKIPIF1<0的圖象過定點(diǎn)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0時(shí),取等號(hào),所以SKIPIF1<0的最小值是SKIPIF1<0.故答案為:SKIPIF1<0.23.(2023秋·河北·高三統(tǒng)考階段練習(xí))已知SKIPIF1<0,則SKIPIF1<0的最小值為___________.【答案】SKIPIF1<0【分析】根據(jù)已知條件變形,再應(yīng)用基本不等式求最小值即可.【詳解】SKIPIF1<0則SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立.SKIPIF1<0,∴SKIPIF1<0最小為SKIPIF1<0,此時(shí)SKIPIF1<0.故答案為:SKIPIF1<0.24.(2023·重慶渝中·高三重慶巴蜀中學(xué)??茧A段練習(xí))已知實(shí)數(shù)a,b滿足SKIPIF1<0,則SKIPIF1<0的最大值為_____________.【答案】2【分析】先消元,再用基本不等式即可求出最大值.【詳解】由SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),此時(shí)SKIPIF1<0,SKIPIF1<0,或者SKIPIF1<0,SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0的最大值為2.故答案為:2.25.(2023·重慶·統(tǒng)考一模)已知SKIPIF1<0,則SKIPIF1<0的最小值是___________.【答案】4【分析】把SKIPIF1<0化為SKIPIF1<0,再利用“1”的妙用,結(jié)合基本不等式即可得到答案.【詳解】SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),取等號(hào),故SKIPIF1<0的最小值是4,故答案為:SKIPIF1<0.26.(2023·黑龍江哈爾濱·哈爾濱三中??家荒#┮阎猄KIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為______.【答案】2【分析】根據(jù)基本不等式湊項(xiàng)法和“1”的巧用即可求得最值.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立,所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.27.(2023秋·山西長治·高三校聯(lián)考階段練習(xí))已知兩個(gè)正數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值為__________.【答案】2【分析】先通分得到等式SKIPIF1<0,再通過配方法得到等式SKIPIF1<0,最后通過基本不等式得到SKIPIF1<0的取值范圍即可得到答案.【詳解】由SKIPIF1<0得SKIPIF1<0.所以SKIPIF1<0,即SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào).又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0的最大值為2.故答案為:2.28.(2023·吉林·長春十一高校聯(lián)考模擬預(yù)測(cè))已知正實(shí)數(shù)x,y滿足SKIPIF1<0,則SKIPIF1<0的小值為______.【答案】SKIPIF1<0【分析】利用待定系數(shù)法可得出SKIPIF1<0,與SKIPIF1<0相乘,展開后利用基本不等式可求得SKIPIF1<0的最小值.【詳解】設(shè)SKIPIF1<0,可得SKIPIF1<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個(gè)人與文化傳播公司合作推廣合同2篇
- 2025年度個(gè)人信用汽車貸款額度調(diào)整合同4篇
- 2025年度綠色能源儲(chǔ)藏系統(tǒng)采購合同4篇
- 二零二五年度美容院美容院連鎖經(jīng)營管理股份合作合同3篇
- 二零二五版綠色建筑暖通系統(tǒng)性能評(píng)估合同4篇
- 2025年度建筑工地臨時(shí)宿舍租賃服務(wù)合同范本2篇
- 2025年度寧波市事業(yè)單位財(cái)務(wù)人員勞動(dòng)合同4篇
- 二零二五年度養(yǎng)老服務(wù)業(yè)合作合同2篇
- 二零二五年度新能源產(chǎn)業(yè)過橋資金投資合同
- 2025年度個(gè)人家居裝修貸款合同模板(含材料費(fèi))3篇
- 碳排放管理員 (碳排放核查員) 理論知識(shí)考核要素細(xì)目表四級(jí)
- 撂荒地整改協(xié)議書范本
- GB/T 20878-2024不銹鋼牌號(hào)及化學(xué)成分
- 診所負(fù)責(zé)人免責(zé)合同范本
- 2024患者十大安全目標(biāo)
- 印度與阿拉伯的數(shù)學(xué)
- 會(huì)陰切開傷口裂開的護(hù)理查房
- 實(shí)驗(yàn)報(bào)告·測(cè)定雞蛋殼中碳酸鈣的質(zhì)量分?jǐn)?shù)
- 部編版小學(xué)語文五年級(jí)下冊(cè)集體備課教材分析主講
- 電氣設(shè)備建筑安裝施工圖集
- 《工程結(jié)構(gòu)抗震設(shè)計(jì)》課件 第10章-地下建筑抗震設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論