版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1
ShapingAI'sImpactonBillionsofLives
Mariano-FlorentinoCuéllar
,
JeffDean
,
FinaleDoshi-Velez
,
JohnHennessy
,
AndyKonwinski
,
SanmiKoyejo
,
PelonomiMoiloa
,
EmmaPierson
,and
DavidPatterson
Introduction1
I.PuttingPragmaticAIinContext3
HistoryofTechnologicalParadigmShifts3
ArtificialIntelligence(AI)5
ArtificialGeneralIntelligence(AGI)6
II.DemystifyingthePotentialImpactofAI7
Employment7
Education9
Healthcare12
Information/News/SocialNetworking14
Media/Entertainment16
Governance/NationalSecurity/OpenSource18
Science21
III.HarnessingAIforthePublicGood23
Milestones,Prizes,andResearchCenters23
Conclusion24
Acknowledgements25
AppendixI:EnergyUsageofAI26
AppendixII:TheRapidUpskillingPrize27
Bibliography27
Authors30
Introduction
Arti?cialIntelligence(AI),likeanytransformative
technology,hasthepotentialtobeadouble-edged
sword,leadingeithertowardsigni?cant
advancementsordetrimentaloutcomesforsocietyasawhole.Asisoftenthecasewhenitcomesto
widely-usedtechnologiesinmarketeconomies(e.g.,carsandsemiconductorchips),commercialinteresttendstobethepredominantguidingfactor.TheAI
communityisatriskofbecomingpolarizedtoeithertakealaissez-faireattitudetowardAIdevelopment,ortocallforgovernmentoverregulation.BetweenthesetwopolesweargueforthecommunityofAI
practitionerstoconsciouslyandproactivelyworkfor
thecommongood.Thispapero?ersablueprintforanewtypeofinnovationinfrastructureincluding18
concretemilestonestoguideAIresearchinthat
direction.OurviewisthatwearestillintheearlydaysofpracticalAI,andfocusede?ortsbypractitioners,
policymakers,andotherstakeholderscanstillmaxi-mizetheupsidesofAIandminimizeitsdownsides.
Too?erasu?ciently-broadandrealistic
perspectivethatcapturesthepossibilities,we’ve
assembledateamcomposedofseniorcomputer
scientists,policymakers,andrisingstarsinAIfrom
academia,startups,andbigtech—ateamthatcoversmanyAIdomains(seeAuthors).
Inadditiontoourownexpertise,ourperspectiveisinformedbyinterviewswithtwodozenexpertsin
2
various?elds.WetalkedtoluminariessuchasrecentNobelist
JohnJumper
onscience,President
Barack
Obama
ongovernance,formerUNAmbassadorandformerNationalSecurityAdvisor
SusanRice
on
security,philanthropist
EricSchmidt
onseveraltopics,andscience?ctionnovelist
NealStephenson
on
entertainment.Wealsometwithexpertsinlabor
economics,education,healthcare,andinformation.Thisongoingdialogueandcollaborativee?orthas
producedacomprehensive,realisticviewofwhattheactualimpactofAIcouldbe,fromadiverseassembly
ofthinkerswithdeepunderstandingofthistechnologyandthesedomains.
Ourviewisthatwearestillinthe
earlydaysofpracticalAI,andthat
focusedefortsbypractitioners,
policymakers,andotherstakeholders
canstillmaximizetheupsidesofAI
andminimizeitsdownsides.
ThesediscussionshavecrystallizedourconvictionthatrecentAImodelshaveshownaremarkable
promisetoin?uencetheworld,potentiallya?ectingbillionsoflivesforbetterorworse.WethinkthebestbetgoingforwardistoassumeAIprogresswill
continueorspeedup,andnotslowdown.AI'simpactonsocietywillbeprofound.
Fromtheseexchanges,?verecurringguidelines
emerged,whichformthecornerstoneofaframeworkforbeginningtoharnessAIinserviceofthepublic
good.Theynotonlyguideoure?ortsindiscoverybutalsoshapeourapproachtodeployingthis
transformativetechnologyresponsiblyandethically.
1.HumansandAIsystemsworkingasateam
candomorethaneitherontheirown.ApplicationsofAIfocusedonhumanproductivityproducelarger
productivityincreasesthanthosefocusedon
replacinghumanlabor[Brynjolfsson][National
Academies].Inadditiontoincreasingpeople’s
employability,toolsaimedatmakingpeoplemore
productiveletthemactassafeguardsifAIsystems
veero?course.AIattimescanleveltheplaying?eldbetweenthosewhohavemanyresourcesandthoseoflimitedresources.SincepeopleandAIsystems
tendtomakedi?erentmistakes,collaboratingwithAImayimproveresults.Inshort,focusingonhuman
productivityhelpsbothpeopleandAItoolssucceed.Policiesshouldaimtowardinnovationsthatencour-agehuman-AIcollaborationwhilereducingrisks.
2.Toincreaseemployment,aimfor
productivityimprovementsin?eldsthatwould
createmorejobs.Despitetremendousproductivitygainsincomputingandairlinetravel,theUnited
Statesin2020had11timesmoreprogrammersand8timesmorecommercialairlinepilotsthanin1970.
Thisgrowthisbecauseprogrammingandairline
transportationwere?eldswithwhatlaboreconomistscallanelasticdemand.Goodswithelasticdemandarethosewhereadecreaseinpriceresultsinalarge
increaseinthequantityacquired.Agriculture,ontheotherhand,isinelasticintheU.S.,soproductivity
gainshavereducedthenumberofagriculturejobsfourfoldinonehumanlifetime(1940to2020).
Discussionswithexpertsinother?eldswilllikely
uncovermoreopportunitiesforAItoincrease
productivity.IfpolicymakersandpractitionersaimAIsystemsatimprovingproductivityinelastic?elds,AIcanincreaseemployment,despitepublicfearstothecontrary.AndasrecentNobelistJohnJumper
observed,onewaytoacceleratescienti?cprogressistoimprovetheproductivityofscientists,whichisthegoalofa“scientist’saide”(see
Science
).ProductivitygainsinsciencefromAIcouldprovetobeextremelyvaluabletosociety[NationalAcademies].
3.AIsystemsshouldinitiallyaimatremovingthedrudgeryofcurrenttasks.Ifpolicymakersandpractitioners?rsttargetAIsystemsthatautomate
menialandunful?llingaspectsofcurrentjobs,they
canmakeworkmoremeaningfulandenjoyable.
Doctorsandnurseschoosetheircareersbecause
theywanttohelppatients,nottodoendless
insurancedocumentation.Schoolteachersmayprefertospendtheirtimeonstudentinteractionratherthan
gradingandrecordkeeping.Ratherthanskipaheadto
3
newAIinnovations,?rstprovideAItoolstoimprovethemeaningfulnessofpeople’scurrentworkin
hospitalsandclassrooms.Forexample,AI-powered“teacher’saide”tools(see
Education
)couldautomatetasksteachers?ndunful?lling,freeinguptimeto
spendwithstudentsandmakingteachingworkloadsmoremanageable.Asecondarybene?tisthattheymightbemorelikelytouseAItoolsinthefuture.
Sisyphus’sdrudgery.HecouldhaveusedAI’shelp.
4.TheimpactofAIvariesbygeography.
PhilanthropistEricSchmidtemphasizedthatwhile
nationswithadvancedeconomiesworryaboutAI
displacinghighlytrainedprofessionals,countrieswith
leaneconomiesfaceshortagesofthesesameskilledexperts(see
Employment
).AIcouldmakesuch
expertisemorewidelyavailableinplaceswith
extremescarcityoftrainedworkersandwithinsuf-?cientfunding,
potentiallyenhancingqualityoflife
andeconomicgrowth
.AIsystemscouldbecomeastransformativeforthelow-andmiddle-income
nationsas
mobilephoneshavebeen
[Rotondi].Forexample,a“healthcareaide”thatimprovedtheskillsetsandproductivityofnursesandphysician
assistantscouldalsogivemorepatientsaccessto
qualityhealthcareinregionsfacingphysician
shortages(see
Healthcare
).MultilingualAImodelsonsmartphonescangreatlyhelppeopleinlow-and
middle-incomecountriesgainaccesstoinformation,education,media/entertainment,andmore.Better
economiesandservicesmayeveno?er
alternatives
toemigrationforsomeinmiddle-incomecountries
.
5.DeterminethebestmetricsandmethodstoevaluateAIinnovations.WemustmeasureAI
accuratelytoevaluateitsrealpotential.Inhigh-stakesdomains,becausewecan'triskharmingparticipants,
weneedtousegoldstandardtoolstoevaluate
innovationaccuratelyandidentifypossiblelimitationsbeforewidedeployment:
A/Btesting
,
randomized
controlledtrials
,and
naturalexperiments
.1Equally
urgentis
post-deploymentmonitoring
toevaluate
whetherAIinnovationsdowhattheysaytheyare
doing,whethertheyaresafe,andwhethertheyhaveexternalities.WealsoneedtocontinuouslymeasureAIsystemsinthe?eldsoastobeabletoincre-
mentallyimprovethem.Inother,lowerrisksituations,themarketplaceandobservationalstudiescanassesse?ectivenessofAItoolswithoutneedingthesame
rigor,suchasfor
AItoolsforprogrammers
.
Havingcoveredthe?veguidelines,thenextpartsetsthecontextforthecurrentexcitementaboutAI.
I.PuttingPragmaticAIinContext
HistoryofTechnologicalParadigmShifts
Similartothedawnoftelevision,computers,
nuclearpower,andtheinternet,uncompromising
antagonisticpositionsarebeingtakenintheseearlydaysofpracticalAI.Thepolarizeddiscourseonthis
newtechnologyhasdevolvedcurrentlyintoastando?between“
accelerationists
”and“
doomers
.”LikemostpractitionersofAI,webelieverealityismorenuanced.
OnedebatedissueistheroleofthegovernmentinAI’sdevelopment.Recente?ortsbycompaniesto
developAIsystemshavebeenlikenedtothe
ManhattanProject
inthe1940sorthe
SpaceRace
ofthe1960s.Intermsofinvestmentsize,thenearly
$2B
1Anaturalexperimentisaresearchstudywhere
individualsareexposedtodi?erentconditions,likea
controlgroup,notbytheresearcher'sdesignbutbya
naturallyoccurringeventorpolicychange.Researchers
treatsuchastudyasactingasifrandomassignment
occurred,allowingthemtoobserveandanalyzethee?ectswithoutactivelymanipulatingvariables.Thisoptionisoftenusedwhencontrolledexperimentsarenotfeasibleduetoethicalorpracticallimitations.
4
fortheManhattanProjectwouldbe$27Bintoday’s
dollars
,andthe
$26Btoputapersononthemoon
wouldbe$318Btoday
.WhilecurrentAIisroughlycomparableintermsofsizeofinvestment,thebigdi?erenceisthattheU.S.governmentfundedthosee?ortswhileprivateindustrybacksthisone,and
mostofthetalentinvolvedareintheAIindustry.
Giventhisrelationship,weneedanewinnovationinfrastructure.PolicychangestoimprovetheimpactofAIarelikelybestaccomplishedviacollaboration
betweengovernment,industry,andacademia.2Asahistoricalprecedent,wecanlookattherolethe
governmentplayedinthedevelopmentofintegratedcircuitchipsandcars.
TheU.S.government’sApolloandMinutemanprogramsused>95%ofallchipsmadein1965.
Inthe1960s,thegovernmentwastheprimary
consumerofchips,asthesmallersizeandlower
powerofchipswasvitalintheSpaceRace.
Over95%
ofthechipsmadein1965wereusedbytheApollo
andMinutemanprograms
.Thismanufacturing
volumeallowedthenascentsemiconductorindustrytoimproveitsfabricationprowesssoitcouldenter
themuchlargercommercialmarketbytheendofthedecade.Twoyearslater,
Inteldeliveredthe?rst
microprocessor
.Thegovernmentalsofunded
universityresearchthathelpedpushthefrontiersof
chipdesign
andmanufacturing,helping
Moore’sLaw
tocontinueformorethan50years.
2Inadditiontouniversitieshelpingadvancetheresearchfrontier,thepeopleinindustryandgovernmentpursuingAItechnologyandpolicyareeducatedatuniversities.EnablinguniversitiestoprepareindividualstoadvanceAI,aswellastoeducatethebroadpopulationtothriveinaworldof
ubiquitousAI,iscrucialtooursharedfuture.
Inthe?rsthalfofthe20thcentury,car
manufacturersbene?tedas
governmentsbuiltand
improvedroadsandfreewaysfundedbygasoline
taxes,createdtra?clightsandtravelsigns,and
licenseddrivers
.Inthe1960s,theU.S.createdthe
NationalHighwayTra?cSafetyAdministration
andthe
EnvironmentalProtectionAgency
,whichset
societalbene?tingstandardsoncarsafetyand
emissionsforthewholeindustrythatmighthave
beendi?cultforindividualcarmanufacturerstodoontheirown.Morerecently,thegovernmenthas
fundedacademicresearchtoimprovecars.ExamplesareDARPA’sself-drivingchallenge(
wonbyacademic
researchers
),
automotivesafety
,and
fuele?ciency
.
Weenvisionacoordinatedpublic-private
partnershipforAI.Itsgoalwouldbetoremove
bureaucraticroadblocks(e.g.,tosharingdata),ensuresafety,andprovidetransparencyandeducationto
policymakersandthepublic.Inadditiontolearning
fromhistoricalprecedentsforthedevelopmentofAIsystems,weshouldalsolearnfromthehistoryofhowtransformativetechnologieshavebeendeployed.
Onelessonlearnedfromtherolloutsofparadigm-shiftingtechnologieslikebroadbandinternet,cloud,mobiledevices,andsocialmediaisthattheir
deploymentwaslengthierthantechnologistspredicted,buttheirimpactwasevenmorewidespread.Quoting
BillGates
:
OnethingI’velearnedinmyworkwithMicrosoftisthatinnovationtakeslongerthanmany
peopleexpect,butitalsotendstobemorerevolutionarythantheyimagine.
Anotherlessonisthatpredictionsoftechnologicalimpactfrompeopleinother?eldsaresimilarly
inaccurate[NationalAcademies]:
…commentatorsandexpertsofall
stripes—socialandnaturalscientists,historians,andjournalists—haveanalmostunblemishedrecordofincorrectlyforecastingthelong-run
consequencesoftechnologicalinnovations.
Athirdlessonisthatitisoftenhardtoaccuratelypredicttheunintendednegativesidee?ectsuntil
afterthetechnologieswerewidelydeployed,withsocialnetworkingastheprimeexample.
5
TimewilltellifAIprovestobeanexceptiontothesethreelessons.
Arti?cialIntelligence(AI)
BeforewediscussAI’simpactwithineachofourhalf-dozen?elds,let’sreviewhowwegothere.ThetermArti?cialIntelligence(AI)wascoinedtode?nethescienceandengineeringofmakingintelligentmachines
in1956,only?veyearsafterthe?rstcommercialcomputer.3
OnestrandofAIthatbecamepopularoverthenextdecadeswastocreateasetofrulesoftheform“if
thishappensdothat,ifthathappensdothis.”The
beliefwasthatwithsu?cientlyaccurateandlarge
setsofrules,intelligencewouldemerge.Withinthe
bigtentofAI,acontrarianstranddidnotacceptthathumanswouldeverbeabletowritesuchasetof
rules.Theybelievedthattheonlyhopewastolearntherulesfromthedata.Thatis,itwasmuchhardertoprogramacomputertobecleverthanitwastoprogramacomputertolearntobeclever.JustthreeyearsafterAIwasde?ned,theychristenedthisbottom-up
approachmachinelearning(ML).4
OnebranchoftheMLcommunitybelievedtheonlyhopeforcreatingaprogramthatcouldlearnfrom
datawouldbetoimitateouroneclearexampleofintelligence:thehumanbrain.Ourbrainsconsistof100billionneuronswith100trillionconnections
betweenthem.ThisversionofMLisbasedonavery
3In1961,Turinglaureate
DougEnglebart
tookthe
contrarianapproachofaugmentinghumanintellect
[Englebart],whichisthetermBrynjolfssonusedinhis
paper.Weinsteadusethephrase“improvinghuman
productivity”becausewethinkitiseasierforthepublicandpolicymakerstounderstandtheimplicationsofproductivitygainsthanofaugmentation.
4ThisabbreviatedhistoryofAIissimpli?ed.Inthe1950stherewasaferventenergyaroundtheconceptofintelligentmachinesinspiredbyhumanbrains/intelligence,andduringthe1960sthevarioustraditionsgrewapart.InthebigthreeCSAIdepartmentsofthetimethatwerefundedbyDARPA(MIT,Stanford,CMU),thetop-down“symbolicAI”traditiontookhold.Rule-basedsystemsmentionedabovearejust
onebranchofsymbolicAI.Neuralnetworksalsogotabig
boostinthemid-1980s,e.g.,theresearchbyTuringlaureateYannLeCunonhandwritingrecognitionusing
MNIST
.
simplemodelofaneuron,sothisformofML(thatisalsowithinthebigtentofAI)iscalledaneural
network.Atypicalneuralnetworkmightuse100
millionarti?cialneurons.Becausecurrentversionsofneuralnetworkshavemanymorelayersofarti?cialneuronsthaninthepast,recentincarnationsarealsocalleddeepneuralnetworksordeeplearning.
Neuralnetworkshavetwophases,trainingand
serving(alsocalledinference).Trainingisanalogoustobeingeducatedincollegeandservingislikeworkingaftergraduation.Traininganeuralnetworkinvolvesrepeatedlyshowingitlabeleddata(e.g.,images
identi?edascatsordogs)withthesystemadjustingitsarti?cialneuronsuntilitgivessu?cientlyaccurateanswerstoquestionsaboutthatdata(e.g.,isitacatoradog).Oncetrained,thegoalisthatthemodel
shouldworkwellwithdataithasnotyetseen(e.g.,correctlydeterminingifanimageisofacatoradog).
TheRussiandollsofAI.
AfterdecadesofdebatesaboutwhichAI
philosophywasbest,in2012neuralnetworksstartedtosoundlybeatthecompetition.Thebreakthrough
12yearsagowasn’tsomuchtheinventionofnew
neuralnetworkalgorithmsasitwasthatMoore’sLawledtomachinesthatwere10,000timesfasterandwecouldnetworkmanytogethertoworkinconcert.Thatenabledtrainingusing
10,000timesmorelabeled
data
availablefromtheWorldWideWeb.VirtuallyallnewsstoriestodayconcerningAIbreakthroughsare,moreprecisely,aboutneuralnetworks.
TheexcitementaboutAIspikedbyChatGPTin2022isaboutmodelswithbillionsofneuronsthattake
6
monthstotrainontensofthousandsofchips
designedsolelyforneuralnetworktraining.Thesegiantneuralnetworkswereinitiallycalledlarge
languagemodels(LLMs)becausethe?rstexamplesperformedamazingfeatsbasedontext.Eventuallythesemodelsbecamemoremultimodal,
incorporatingdatatypesbeyondtextsuchasimages,audio,andvideo.Theterminologyisevolvingwiththetechnology,andLLMsarenowoftencalledfoundationmodels[Bommasanietal.]orfrontiermodels.
Theadventoftheselargefrontiermodelshas
raisedunderstandableconcernsaboutenergyuseofAI.
AppendixI
coversthistopicindetail,butaquick
summaryisthatAIsystemstodayaccountfor
undera
quarter
of
1%ofglobalelectricityuse
,atenthofdigi-talhouseholdapplianceslikeTVs.The
International
EnergyAgencyconsidersevenastrongprojected
increasedenergyconsumptionbyAIfor2030tobe
modest
relativetootherlargertrendslikecontinuedeconomicgrowth,electriccars,andairconditioning.
WhileweusethebroadtermAI,the?eldis
fragmented,coveringmanytechnologies.Our
discussionwillprimarilyfocusongenerativeand
predictiveAIsystems,withabriefdiscussionofsomeotheraspectsofAIwhererelevant.ExamplesareAIassistants(e.g.,
NotebookLM
),chatbots(e.g.,
ChatGPT
),
retrieval-augmentedgeneration
(RAG)
systems5(e.g.,
Perplexity
),and
generativeAIsystems
(e.g.,
Midjourney
).
Arti?cialGeneralIntelligence
(AGI)
BeforewecangettotheimpactofneartermAI,we?rstneedtoconsidertheprospectofarti?cialgeneralintelligence(AGI).AnAIsystemcaneasilywriteanewbedtimestorydailyfeaturingyourchildrenasmain
characters.Adi?erentAIsystemcouldbeatany
humanbeingattheclassicstrategygameofGo.Asofnow,nosingleAIsystemcandobothofthesethings.
5Retrieval-augmentedgeneration(RAG)isanAIframeworkthatcombinesLLMswithtraditionalinformationretrievalsystemstoproducemoreaccurateandrelevanttext.
Eachcandeliveramazingcapabilities,buttheyarepracticallyuselessiftheystrayoutsidetheirlanes.IncontrasttoexistingAI,proponentsarguethatanAGIthatwouldbemultitalented—capableenoughtowinstrategygames,diagnosediseases,analyzepoetry,andcontributetoappliedcomputerscience
innovationsthatcanfurtherenhancethecapacityofAGIsystems.
Ageneralknife.
AGIhasmanyde?nitions,
butoneframework
gainingpopularity
emphasizestherangeoftasksthatanAIsystemreachesatargetthresholdcomparedtopeopleandhowwellitcomparestohuman-level
performanceforagiventask[Morrisetal.].Thresholdsarelabeledbasedontheportionofpeoplethatthe
systemoutperforms:competent(>50%),expert
(>90%),virtuoso(>99%),andsuperhuman(>100%).
AlphaGo
isratedsuperhuman,butonlyforplayingGo,andisnotcompetentatanythingelse.This
breadthversusdepthmetrichelpsclarifyAGIdiscussions.
TremendousattentionisbeingpaidtoAGI,
deservedlysogivenitslargepotentialpositiveand
negativeimpactontheworld.WeapplaudtheseriousinvestigationsofAGI,includingscienti?cworkthat
aimstoclarifyrelevantde?nitionsandlikelyimpacts.
Aswefocusonimpactsofcurrentandnear-termAIsystems,wewillnotdiscussAGIfurther,beyond
mentioningthatprogressonthetopicmayaccelerateboththebene?tsandrisksweoutlinehere.
ThenextpartofthepaperdelvesintotheimpactofAIsystemsinthehalfdozen?eldsweinvestigated.
7
II.DemystifyingthePotentialImpactofAI
Employment
Our?rsttopicfornearer-termAIisamajor
concern:theimpactonjobs[NationalAcademies].Indeed,a
GlobalPublicOpinionPollonAI
foundthatthemajorityexpecttobereplacedatworkbyanAIsysteminthecomingdecade[Loewenetal.].
Technologicaladvancementshavelongledtothedeclineofsomejobsandthecreationofnewones.
FortheU.S.workforce,
63%hadjobsin2018thatdid
notexistin1940
[Autor2022].Figure1shows
examplesoffourjobswherenumberschangedstrikinglyfrom1970to2020.
Despitethedownsideofjobdisruption,ahealthyeconomyreliesonimprovingworkerproductivity.
Two-thirdsoftheworld’spopulationlivesincountries
withbelow-replacementbirthlevels
[Eberstadt]andmanynationsarefacing
laborshortages
[Duarte].
TheU.S.alreadylackscriticalpositionsasvariedas
K-12teachers
,
passengerairlinepilots
,
physicians
,
registerednurses
,
softwareengineers
,and
school
busdrivers
.Tosupplyneededservices,high-income
countriesmusteithergreatlyexpandtheirworkingpopulationorsigni?cantlyimproveworker
productivity[ManyikaandSpence].
Theimpactofproductivitygainsonjobsdependsonwhetherthedemandforgoodsproducedbythatworkiselasticorinelastic.Ifdemandisinelastic,
productivitygainsmeansjobswillbelost
[Bessen].Forexample,agricultureisinelasticintheU.S.,so
gainsmeantdramaticdeclinesinabsolutenumbers(fourfold)anditsportionoftheworkforce(
from40%
in1900to20%in1940,4%in1970,and2%today
)
[Daly].
Ifproductdemandissu?cientlyelastic,
productivity-enhancingtechnologywillincrease
industryemployment
[Bessen].
Forexample,programmerstodayare
tremendouslymoreproductivethantheywerein1970—theyhavemorepowerfulprogramming
languagesandtools,plusMoore’sLawhelped
improvehardwareamillionfold—yettherewere11timesmoreprog
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年高中政治第一單元生活智慧與時(shí)代精神第二課第一框哲學(xué)的基本問題課后練習(xí)含解析新人教版必修4
- 2024版?zhèn)€人宅基地轉(zhuǎn)讓的協(xié)議書
- 部編版八年級(jí)上冊語文《蘇州園林》說明方法教學(xué)設(shè)計(jì)
- 2025年旅游行業(yè)勞務(wù)派遣委托協(xié)議范本3篇
- 2025年房地產(chǎn)大數(shù)據(jù)售房房屋買賣合同3篇
- 2025年石油化工行業(yè)安全咨詢評(píng)估合同4篇
- 浙江省溫州市龍灣區(qū)2025屆中考聯(lián)考生物試卷含解析
- 2025年度環(huán)保材料研發(fā)與應(yīng)用合同協(xié)議4篇
- 二零二五年度房地產(chǎn)抵押貸款合同書3篇
- 二零二五年度空壓機(jī)設(shè)備租賃與節(jié)能環(huán)保評(píng)估合同3篇
- 2023年湖北省武漢市高考數(shù)學(xué)一模試卷及答案解析
- 城市軌道交通的網(wǎng)絡(luò)安全與數(shù)據(jù)保護(hù)
- 英國足球文化課件
- 《行政職業(yè)能力測驗(yàn)》2023年公務(wù)員考試新疆維吾爾新疆生產(chǎn)建設(shè)兵團(tuán)可克達(dá)拉市預(yù)測試題含解析
- 醫(yī)院投訴案例分析及處理要點(diǎn)
- 燙傷的安全知識(shí)講座
- 工程變更、工程量簽證、結(jié)算以及零星項(xiàng)目預(yù)算程序?qū)嵤┘?xì)則(試行)
- 練習(xí)20連加連減
- 五四制青島版數(shù)學(xué)五年級(jí)上冊期末測試題及答案(共3套)
- 員工內(nèi)部崗位調(diào)換申請表
- 商法題庫(含答案)
評(píng)論
0/150
提交評(píng)論