版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Lesson20RecentAdvancesinComputerVision
(第二十課計(jì)算機(jī)視覺的新進(jìn)展)
Vocabulary(詞匯)ImportantSentences(重點(diǎn)句)QuestionsandAnswers(問答)Problems(問題)ReadingMaterial(閱讀材料)
Computervisionisthebranchofartificialintelligencethatfocusesonprovidingcomputerswiththefunctionstypicalofhumanvision.Todate,computervisionhasproducedimportantapplicationsinfieldssuchasindustrialautomation,robotics,biomedicine,andsatelliteobservationofEarth.Inthefieldofindustrialautomationalone,itsapplicationsincludeguidanceforrobotstocorrectlypickupandplacemanufacturedparts,nondestructivequalityandintegrityinspection,andon-linemeasurements.Untilafewyearsago,chronicproblemsaffectedcomputer-visionsystemsandpreventedtheirwidespreadadoption.Sinceitsstart,computervisionhasappearedasacomputationallyintensiveandalmostintractablefieldbecauseitsalgorithmsrequireaminimumofhundredsofMIPS(MillionsofInstructionsPer-Second)tobeexecutedinacceptablerealtime.[1]Eventheinput/outputofhigh-resolutionimagesatvideoratewastraditionallyabottleneckforcommoncomputingplatformssuchaspersonalcomputersandworkstations.Tosolvetheseproblems,theresearchcommunityhasproducedanimpressivenumberofdedicatedcomputer-visionsystems.OnesuchfamoussystemwastheMassivelyParallelProcessor(MPP),designedattheGoddardSpaceFlightCenterin1983andoperatedthereuntil1991.TheMPPusedanarrayof16,384single-bitprocessorsandwascapableatpeakperformanceof250millionfloating-pointoperations/s—animpressivefeatatthetime.
DedicatedcomputerssuchastheMPPhavealwaysreceivedacoldreceptionfromindustrybecausetheywereexpensive,cumbersome,anddifficulttoprogram.[2]Inrecentyears,however,increasedperformanceatthesystemlevel—fastermicroprocessors,fasterandlargermemories,andfasterandwiderbuses—hasmadecomputervisionaffordableonawidescale.Fastmicroprocessorsanddigital-signalprocessorsarenowavailableasoff-the-shelfsolutions,andsomeofthemcanexecutecalculationsatratesofthousandsofMIPS.TheTexasInstrumentsC6414processor,forexample,runsat600MHzandcanachieveapeakperformanceof4,800MIPS.HighspeedserialbusessuchastheIEEE1394andUSB2.0arecapableoftransferringhundredsofmegabitspersecond,aratethatgreatlyexceedstherequirementsofanycommonhigh-resolutionvideocamera.Thesebusesarealreadyintegratedintothemostrecentpersonalcomputerchipsetsorareavailableasinexpensivedaughterboards.Moreover,videocamerashavegonealmostcompletelytodigital,andtheycomeinseveralpricerangesandtypes.ConsumercamcordersarebasedonstandardssuchastheDigitalVideo(DV),whichprovidesvideoswith720×480pixels/frameatarateof30frames/s.EvenWebcamscannowprovideimagesofsatisfactoryqualityatpricesstartingaslowas$25.
Theavailabilityofaffordablehardwareandsoftwarehasopenedthewayfornew,pervasiveapplicationsofcomputervision.Theseapplicationshaveonefactorincommon.Theytendtobehuman-centered;thatis,eitherhumansarethetargetsofthevisionsystemortheywanderaboutwearingsmallcameras,orsometimesboth.Visionsystemshavebecomethecentralsensorinapplicationssuchas
Human-ComputerInterfaces(HCIs),thelinksbetweencomputersandtheirusers.
augmentedperception,toolsthatincreasenormalperceptioncapabilitiesofhumans.
automaticmediainterpretation,whichprovidesanunderstandingofthecontentofmoderndigitalmedia,suchasvideosandmovies,withouttheneedforhumaninterventionorannotation.
videosurveillanceandbiometrics.1Human-computerinterfaces
ThebasicideabehindtheuseofcomputervisioninHCIsisthatinseveralapplications,computerscanbeinstructedmorenaturallybyhumangesturesthanbytheuseofakeyboardormouse.Inoneinterestingapplication,computerscientistJamesL.CrowleyoftheNationalPolytechnicalInstituteofGrenobleinFranceandhiscolleaguesusedhumaneyemovementstoscrollacomputerscreenupanddown.Acameralocatedontopofthescreentrackedtheeyemovements.TheFrenchresearchersreportedthatatrainedoperatorcouldcompleteagiventask32%fasterbyusinghiseyesratherthanakeyboardormousetodirectscreenscrolling.Ingeneral,usingcamerastosensehumangesturesismucheasierthanmakinguserswearcumbersomeperipheralssuchasdigitalgloves.
AnotherinterestingexampleofanHCIapplicationcanbedownloadedhereforpersonaltesting,providedaWebcamispluggedintoyourpersonalcomputer.Thisapplication—calledNouse,fornoseasamouse—tracksthemovementsofyournose,andwasdevelopedbyDmitryGorodnichy.YoucanplayNosePong,anose-drivenversionofthePongvideogame(Fig.1),ortestyourabilitytopaintwithyournoseortowritewithyournose.Althoughthisapplicationisslantedtowardfun,itisaconvincingdemonstrationofthepotentialusesofcamerasasnaturalinterfaces.Inindustry,forexample,anoperatormightquicklystopaconveyorbeltwithaspecificgesturedetectedbyacamerawithoutneedingtophysicallypushabutton,pullalever,orcarryaremotecontrol.Fig.1Acameratracksthepointofeachplayer’snoseclosesttothecameraandlinksittothe
red“bat”at
thetop(orbottom)ofthetabletoreturnthecomputerballacrossthe“net.”(InstituteforInformationTechnologyNationalResearchCouncilCanada;UniversityofTechnology,Sydney,Australia)
Camerascouldalsobecomepowerfulperipheralsfortheso-calledintelligenthome.Acameralocatedinyourlivingroomwouldperformseveraltasks,startingwithsensingahumanpresenceandthenturningthelightsonandtheheatup.Indeed,camerascouldreplacethemanyhard-to-findremotecontrolsaroundtoday’shomes,provideenvironmentalsurveillance,andturntheTVoffwhenyoufallasleepinyourfavouritearmchair.2TheVoice
AnotherapplicationisThevOICe,developedatPhilipsResearchLaboratories(Eindhoven,TheNetherlands)byPeterB.L.Meijerandavailableonlinefortesting.ThevOICeprovidesasimpleyeteffectivemeansofaugmentedperceptionforpeoplewithpartiallyimpairedvision.Inthevirtualdemonstration,thecameraaccompaniesyouinyourwanderings.Thecameraperiodicallyscansthesceneinfrontofyouandturnsimagesintosounds,usingdifferentpitchesandlengthstoencodeobjects’positionandsize.3Mediainterpretation
Theuseofcomputervisionforautomaticmediainterpretationassistsusersinsearchingforspecificscenesandshotsotherwisenotannotatedinthevideo-sceneindexes.Forexample,imagescontainingfacescanbeautomaticallydistinguishedfromotherimages,astheresultsoftheFaceDetectionProjectledbyHenrySchneidermanandTakeoKanadeatCarnegieMellonUniversity(CMU)prove.TheCMUfacedetectorisconsideredthemostaccurateforfrontalfacedetectionandisalsoreliableforfacialprofilesandthree-quarterimages.Manyexamplesareavailablehere-oneisshowninFig.1,top—andanyonecansubmitanimagewhichwillprocesstheimageovernightanddepictalldetectedfaceswithaboxaroundthem.
However,computervisioncandomuchmoreformultimedia.Forexample,itisaninvaluablesupporttorecentmultimediastandardsaimedatcompressingdigitalvideos—reducingtheirsizeinbytes—whilestillretainingacceptablevisualquality.OnesuchstandardisMPEG-4fromtheMovingPictureExpertGroup,whichallowsthecompressionofdifferentobjectsinascenewithspecificcompressionlevelsinsuchawayastoadjustthetrade-offbetweenspacereductionandvisualqualityonaper-objectbasis.Thebasicideaisthatimportantobjectssuchasactorsshouldretainthehighestvisualquality,whileobjectsinthebackgroundcanbeencodedwithlowerqualitytosavebytes.[3]Nonetheless,MPEG-4issilentonhowtoseparateavideointotheobjectsofwhichitiscomposed.Hereagain,computervisioncanhelpwithavarietyoftechniquesthatperformthetaskautomatically.4VideoSurveillance
Perhapsthemostdevelopedmodernapplicationofcomputervisionisvideosurveillance.Longgonearethedayswhenvideosurveillancemeantlow-resolution,black-and-white,analogclosed-circuittelevision.Nowadays,computervisionenablestheintegrationofviewsfrommanycamerasintoasingle,consistent“superimage”.Suchanimageautomaticallydetectssceneswithpeopleand/orvehiclesorothertargetsofinterest,classifiesthemincategoriessuchaspeople,cars,bicycles,orbuses,extractstheirtrajectories,recognizeslimbandarmpositions,andprovidessomeformofbehavioranalysis.[4]
Theanalysisreliesonalistofpreviouslyspecifiedbehaviorsoronstatisticalobservationssuchasfrequent-versus-infrequentbehaviors.Thebasicgoalisnottocompletelyreplacesecuritypersonnelbuttoassisttheminsupervisingwiderareasandfocusingtheirattentiononeventsofinterest.Althoughthecriticalissueofprivacymustbeaddressedbeforesocietywidelyadoptsthesevideosurveillancesystems,therecentneedforincreasedsecurityhasmadethemmorelikelytowingeneralacceptance.Inaddition,severaltechnicalcountermeasurescanbetakentopreventprivacyabuses,suchasprotectingaccesstovideofootagebywayofpasswordsandencryption.
AttheUniversityofTechnologyinSydney,Australia,wehavedevelopedandtestedasystemthatcandetectsuspiciouspedestrianbehaviorinparkinglots.Ourapproachisbasedontheassumptionthatasuspiciousbehaviorcorrespondstoanindividual’serraticwalkingtrajectory.Therationalebehindthisassumptionisthatapotentialoffenderwillwanderaboutandstopbetweendifferentcarstoinspecttheircontents,whereasnormaluserswillmaintainamoredirectpathoftravel.Thefirststepconsistsofdetectingallthemovingobjectsinthescenebysubtractinganestimated“backgroundimage”—onethatrepresentsonlythestaticobjectsinthescene—fromthecurrentframe(Fig.2(a)and(b)).Thenextstepistodistinguishpeoplefrommovingvehiclesonthebasisofaformfactor,suchastheheight:widthratio,andtolocatetheirheadsasthetopregionintheirsilhouette.Inthisway,thehead’sspeedateachframeisautomaticallydetermined.Then,aseriesofspeedsamplesarerepeatedlymeasuredforeachpersoninthescene.Eachseriescoversanintervalofabout10s,whichisenoughtodetectsuspiciousbehaviorpatterns(Fig.3,below).Fig.2Thisparking-lotsurveillancesystemsubtractsthestaticbackgroundimage,
distinguishesapersonfrommovingvehicles,locatesthehead,andcalculatesthespeedoftheheadineachframe.Fig.3Examplesofthespeedofthehead(inpixelsperframe)ofapersonintheparkinglotexhibitingnormalbehavior(a)andabnormalbehavior(b).Suchvideosurveillancemightalertasecurityguardtoapossiblecarthief.
Finally,aneuralnetworkclassifier,trainedtorecognizethesuspiciousbehaviors,providesthebehaviorclassification.Intheexperimentsweperformed,thesystemachievedgoodaccuracy,withareasonablylimitednumberoffalsedismissalsandfalsealarms—4%and2%,respectively,amongmorethan100testsamples.Althoughmanufacturersandoperatorsofsurveillancesystemshaveoftenbeenreluctanttoacceptinnovation,recentresultsfromresearchlaboratoriesofmajorcompaniesprovethatthesesystemsarenowreliable,economical,andreadyforcommercialization.[5]OneexampleisDETERfromHoneywellLabs,aprototypeurban-surveillancesystem.
Forthosewhowanttobuildtheirownsurveillancesystems,anenormousamountofequipmentisavailable.WebsitesofmanufacturerssuchasSony,Axis,Pelco,andmanyothersofferawiderangeofcameras.Youcanfindnetworkcamerasstartingatlessthan$500thatcanbesimplypluggedintoanynetwork,suchasaTCP-IP,whichcancarryafullWebserverandallowcameraframestobedownloadedandprocessed.Adjustablepan-tilt-zoomcamerascanbeusedtopointandfocusonspecifictargetsoverwidesurveyareas.Andifcablingposesaproblembecauseofcameralocation,wirelessversionsareavailableoff-the-shelf.Computervision,alreadyausefulaidinseveralindustrialprocesses,willfindincreasingusesascompaniesdevelopnewapplicationsinareassuchasHCI,augmentedperception,andautomaticmediainterpretation.Itspotentialtoimproveplantandpublicsafetyisattractingincreasingattentionintoday’ssecurity-consciousworld.
1.?nondestructiveadj.非破壞(性)的,不破壞的,(檢驗(yàn)方法)無損的。
2.?chronicadj.(=chronical)慢性的;緩慢的;長(zhǎng)期的;積習(xí)成癖的[英俚]劇烈的,緊張的;嚴(yán)重的;(天氣等)惡劣的。
3.?bottleneckn.瓶頸;困難;障礙;隘路;狹道;難關(guān);薄弱環(huán)節(jié);涌塞(現(xiàn)象);影響生產(chǎn)流程的因素(如缺少原料等)。
4.?dedicatedcomputers專用計(jì)算機(jī)。
5.?off-the-shelf現(xiàn)貨供應(yīng):在存貨商品中能得到的;非定制的。
Vocabulary
6.?daughterboard子板,子插件。指一塊主板的附屬電路板,通常包括插槽、插座、引腳、連接件等其他附屬部分,不同于標(biāo)準(zhǔn)的PCI或ISA等標(biāo)準(zhǔn)板。
7.?peripheraladj.周界的;外圍的;外部的;邊緣的;非本質(zhì)的;不深入的;膚淺的;【解】(神經(jīng))末梢區(qū)域的。
8.?surveillancen.監(jiān)視,看守;監(jiān)督,管制。
9.?countermeasuren.反措施,對(duì)抗手段,對(duì)策:對(duì)抗或抵消某手段或行為的策略或行動(dòng)。
10.?trajectoryn.(拋射體的)軌道,軌跡,彈道;流軌;【數(shù)】軌線。
[1]Sinceitsstart,computervisionhasappearedasacomputationallyintensiveandalmostintractablefieldbecauseitsalgorithmsrequireaminimumofhundredsofMIPS(millionsofinstructionspersecond)tobeexecutedinacceptablerealtime.
從一開始,計(jì)算機(jī)視覺就展示為一種計(jì)算密集而幾乎難處理的領(lǐng)域,因?yàn)樾枰辽倜棵雸?zhí)行幾百萬條數(shù)量級(jí)的指令,它的算法才能達(dá)到一個(gè)可接受的實(shí)時(shí)要求。ImportantSentences
[2]DedicatedcomputerssuchastheMPPhavealwaysreceivedacoldreceptionfromindustrybecausetheywereexpensive,cumbersome,anddifficulttoprogram.
像MPP這樣的專用計(jì)算機(jī),由于它們價(jià)格昂貴、體積笨重且難以編程而受到工業(yè)界的冷遇。
[3]Thebasicideaisthatimportantobjectssuchasactorsshouldretainthehighestvisualquality,whileobjectsinthebackgroundcanbeencodedwithlowerqualitytosavebytes.
基本的想法是重要的目標(biāo)(如行動(dòng)者)將保留最高的視覺質(zhì)量,而背景目標(biāo)則用較低的質(zhì)量編碼以便減少存儲(chǔ)字節(jié)數(shù)量。
[4]Suchanimageautomaticallydetectssceneswithpeopleand/orvehiclesorothertargetsofinterest,classifiesthemincategoriessuchaspeople,cars,bicycles,orbuses,extractstheirtrajectories,recognizeslimbandarmpositions,andprovidessomeformofbehavioranalysis.
這樣的圖像自動(dòng)地檢測(cè)景物中的人員及/或車輛或其他感興趣的目標(biāo),并將它們分為不同的種類,如人員、汽車、自行車或公共汽車,提取它們的軌跡,識(shí)別肢體和手臂的位置,并提供一些行為分析的形式。
[5]Althoughmanufacturersandoperatorsofsurveillancesystemshaveoftenbeenreluctanttoacceptinnovation,recentresultsfromresearchlaboratoriesofmajorcompaniesprovethatthesesystemsarenowreliable,economical,andreadyforcommercialization.
雖然監(jiān)督系統(tǒng)的制造商和操作員通常不愿意接受創(chuàng)新,但主要公司的研究工作實(shí)驗(yàn)室近期的結(jié)果證明這些系統(tǒng)現(xiàn)在是可靠的、經(jīng)濟(jì)的且已經(jīng)可以商品化。
(1)?Whataffectedcomputer-visionsystemsandpreventedtheirwidespreadadoptionforalongtime?()
A.?Chronicproblems.
B.?Spacecomplexity.
C.?Timecomplexity.
D.?Dedicatedcomputers.QuestionsandAnswers
(2)?DedicatedcomputerssuchastheMPPhavealwaysreceivedacoldreceptionfromindustrybecausetheywere().
A.?expensive
B.?cumbersome
C.?difficulttoprogram
D.?alloftheabove
(3)?What’sthemostdevelopedmodernapplicationofcomputervision?()
A.?MPEG-4standard.
B.?Videosurveillance.
C.?Intelligenthome.
D.?FaceDetectionProjectatCMU.
(4)?Nowadays,computervisionenablestheintegrationofviewsfrommanycamerasintoasingle,consistent“superimage”.What’sthesuperimagemean?()
A.?Imagewithhugesizeindimensions.
B.?Asetofmethodsofupscalingvideoorimages.
C.?Suchanimageautomaticallydetectssceneswithtargetsofinterest.
D.?Integrationofviewsfrommanycameras.
(5)?AsFig.3shows,theparking-lotsurveillancesystem().
A.?locatesthehead,subtractsthestaticbackgroundimage,distinguishesapersonfrommovingvehicles,andcalculatesthespeedoftheheadineachframe
B.?distinguishesapersonfrommovingvehicles,subtractsthestaticbackgroundimage,locatesthehead,andcalculatesthespeedoftheheadineachframe
C.?distinguishesapersonfrommovingvehicles,locatesthehead,subtractsthestaticbackgroundimage,andcalculatesthespeedoftheheadineachframe
D.?subtractsthestaticbackgroundimage,distinguishesapersonfrommovingvehicles,locatesthehead,andcalculatesthespeedoftheheadineachframe
1.?Whytheauthorgavesuchadisparatepicturesthatcomputervisionhasappearedasacomputationallyintensiveandalmostintractablefield?
2.?Militaryapplicationsareprobablyoneofthelargestareasforcomputervision;doyouthinkittrueornot?Problems
Computervisionisthescience(somesayart)ofprogrammingacomputertoprocess,andultimatelyunderstand,imagesandvideo.Itcanbeviewedassignalprocessingappliedto2D(images),3D(videos),orhigherdimensions.Thisviewhighlightsoneofthemaindifficulties;moderncomputershavea‘serial’design,meaningtheycanonlyprocessonepieceofdataatatime.‘Parallel’processingcomputerswouldbemoresuitableformultidimentionalsignalssuchasvisiontask,andindeed,thisishowthehumanvisualsystemisorganised.ReadingMaterial
ComputerVisionisoneoftheultimateunsolvedproblemsincomputerscience,andsolvingit,orevensmallpartsofit,createsexcitingnewpossibilitiesintechnology,engineeringandevenentertainment.Todaysexamplesrunfromvisualaidsfortheblind,torobotics,tothenewSonyEyeToy!Thefutureofthisquicklydevelopingfieldisonlylimitedbyourimagination.
Mycomputerhasawebcam,doesn’tthatmeanitcansee?No!Awebcamordigitalcameraallowsacomputertocaptureimagesorvideo,recorditandreproduceitonthemonitor.Thisiswhereyoucanseeit.Thecomputernever‘sees’thevideobecauseitcannotunderstandtheinformationintheimageorvideo.Itslikeowningabookwithoutbeingabletoread.Computervisionisaboutprogrammingcomputerstobeableto‘read’theinformationinvisualdata.
ThegoalofComputervisionistoprocessimagesacquiredwithcamerasinordertoproducearepresentationofobjectsintheworld.
Therealreadyexistsanumberofworkingsystemsthatperformpartsofthistaskinspecializeddomains.Forexample,amapofaacityoramountainrangecanbeproducedsemiautomaticallyfromasetofaerialimages.Arobotcanusetheseveralimageframespersecondproducedbyoneortwovideocamerastoproduceamapofitssurroundingsforpathplanningandobstacleavoidance.Aprintedcircuitinspectionsystemmaytakeonepictureperboardonaconveyerbeltandproduceabinaryimageflaggingpossiblefaultysolderingpointsontheboard.
AzipcodereadertakessinglesnapshotsofenvelopesandtranslatesahandwrittennumberintoanASCIIstring.Asecuritysystemcanmatchoneorafewpicturesofafacewithadatabaseofknownemployeesforrecognition.
However,thegeneric“VisionProblem”isfarfrombeingsolved.Noexistingsystemcancomeclosetoemulatingthecapabilitiesofahuman.Systemssuchastheonesdescribedabovearefundamentallybrittle:Assoonastheinputdeviateseversoslightlyfromtheintendedformat,theoutputbecomesalmostinvariablymeaningless.Ifwedidnothaveaproofofexistenceofaverypowerful,generalandflexiblesysteminourownretinasandvisualcortices,theresearchofthepastquarterofacenturywouldseemtoindicatethatthetaskofbuildingrobustvisionsystemsishopeless.
Visionisthereforeoneoftheproblemsofcomputersciencemostworthyofinvestigationbecauseweknowthatitcanbesolved,yetwedonotknowhowtosolveitwell.Infact,tosolvethe“generalvisionproblem”wewillhavetocomeupwithanswerstodeepandfundamentalquestionsaboutrepresentationandcomputationatthecoreofhumanintelligence.
Oneofthemostprominentapplicationfieldsismedicalcomputervisionormedicalimageprocessing.Thisareaischaracterizedbytheextractionofinformationfromimagedataforthepurposeofmakingamedicaldiagnosisofapatient.Generally,imagedataisintheformofmicroscopyimages,X-rayimages,angiographyimages,ultrasonicimages,andtomographyimages.Anexampleofinformationwhichcanbeextractedfromsuchimagedataisdetectionoftumours,arteriosclerosisorothermalignchanges.Itcanalsobemeasurementsoforgandimensions,bloodflow,etc.Thisapplicationareaalsosupportsmedicalresearchbyprovidingnewinformation,e.g.,aboutthestructureofthebrain,oraboutthequalityofmedicaltreatments.
Asecondapplicationareaincomputervisionisinindustry,sometimescalledmachinevision,whereinformationisextractedforthepurposeofsupportingamanufacturingprocess.Oneexampleisqualitycontrolwheredetailsorfinalproductsarebeingautomaticallyinspectedinorderto
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版農(nóng)業(yè)科技園區(qū)土地承包租賃合同3篇
- 2025住宅室內(nèi)裝修合同模板
- 智能家居照明控制網(wǎng)絡(luò)建設(shè)合同
- 2024年度人力資源助理試用期間責(zé)任與權(quán)益保障合同3篇
- 水利樞紐堤壩施工合同
- 2025幼兒園承包合同參考
- 2024年度廣告配音及相關(guān)服務(wù)合同2篇
- 2024年度酒店轉(zhuǎn)讓合同范例版
- 2024年度裝裱行業(yè)市場(chǎng)調(diào)研合同3篇
- 2024年度物聯(lián)網(wǎng)技術(shù)研發(fā)與應(yīng)用合同:智能家居系統(tǒng)2篇
- 《農(nóng)業(yè)企業(yè)經(jīng)營(yíng)管理》試題及答案(U)
- 山東省聊城市2024-2025學(xué)年高一上學(xué)期11月期中物理試題
- 孫悟空課件教學(xué)課件
- 華南理工大學(xué)《自然語言處理》2023-2024學(xué)年期末試卷
- 新能源行業(yè)光伏發(fā)電與儲(chǔ)能技術(shù)方案
- 中國(guó)高血壓防治指南(2024年修訂版)要點(diǎn)解讀
- 24秋國(guó)開《西方行政學(xué)說》形考任務(wù)1答案(第2套)
- 2024巡察整改方案和整改措施
- 醫(yī)院冬季防雪防凍工作應(yīng)急預(yù)案
- 2024年公共管理學(xué)考試題庫(kù)及答案
- 借用資質(zhì)簽合同模板
評(píng)論
0/150
提交評(píng)論