山西省平遙縣和誠(chéng)2025屆高考仿真卷數(shù)學(xué)試卷含解析_第1頁(yè)
山西省平遙縣和誠(chéng)2025屆高考仿真卷數(shù)學(xué)試卷含解析_第2頁(yè)
山西省平遙縣和誠(chéng)2025屆高考仿真卷數(shù)學(xué)試卷含解析_第3頁(yè)
山西省平遙縣和誠(chéng)2025屆高考仿真卷數(shù)學(xué)試卷含解析_第4頁(yè)
山西省平遙縣和誠(chéng)2025屆高考仿真卷數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山西省平遙縣和誠(chéng)2025屆高考仿真卷數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,,則集合的真子集的個(gè)數(shù)是()A.8 B.7 C.4 D.32.函數(shù)在上單調(diào)遞減的充要條件是()A. B. C. D.3.橢圓的焦點(diǎn)為,點(diǎn)在橢圓上,若,則的大小為()A. B. C. D.4.已知向量,,若,則()A. B. C.-8 D.85.在菱形中,,,,分別為,的中點(diǎn),則()A. B. C.5 D.6.已知菱形的邊長(zhǎng)為2,,則()A.4 B.6 C. D.7.已知集合,則()A. B. C. D.8.已知雙曲線的左右焦點(diǎn)分別為,,以線段為直徑的圓與雙曲線在第二象限的交點(diǎn)為,若直線與圓相切,則雙曲線的漸近線方程是()A. B. C. D.9.三棱柱中,底面邊長(zhǎng)和側(cè)棱長(zhǎng)都相等,,則異面直線與所成角的余弦值為()A. B. C. D.10.設(shè)函數(shù)在定義城內(nèi)可導(dǎo),的圖象如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.11.已知函數(shù),則的值等于()A.2018 B.1009 C.1010 D.202012.設(shè)是雙曲線的左、右焦點(diǎn),若雙曲線右支上存在一點(diǎn),使(為坐標(biāo)原點(diǎn)),且,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù),若存在實(shí)數(shù)m,使得關(guān)于x的方程有4個(gè)不相等的實(shí)根,且這4個(gè)根的平方和存在最小值,則實(shí)數(shù)a的取值范圍是______.14.設(shè)、、、、是表面積為的球的球面上五點(diǎn),四邊形為正方形,則四棱錐體積的最大值為_(kāi)_________.15.在中,,,,則________,的面積為_(kāi)_______.16.設(shè),滿足約束條件,則的最大值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù).(Ⅰ)討論函數(shù)的單調(diào)性;(Ⅱ)如果對(duì)所有的≥0,都有≤,求的最小值;(Ⅲ)已知數(shù)列中,,且,若數(shù)列的前n項(xiàng)和為,求證:.18.(12分)已知函數(shù)在上的最大值為3.(1)求的值及函數(shù)的單調(diào)遞增區(qū)間;(2)若銳角中角所對(duì)的邊分別為,且,求的取值范圍.19.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)最小值為,且,求的最小值.20.(12分)的內(nèi)角,,的對(duì)邊分別為,,,已知的面積為.(1)求;(2)若,,求的周長(zhǎng).21.(12分)如圖,在四棱錐中,平面,,為的中點(diǎn).(1)求證:平面;(2)求二面角的余弦值.22.(10分)甲、乙兩班各派三名同學(xué)參加知識(shí)競(jìng)賽,每人回答一個(gè)問(wèn)題,答對(duì)得10分,答錯(cuò)得0分,假設(shè)甲班三名同學(xué)答對(duì)的概率都是,乙班三名同學(xué)答對(duì)的概率分別是,,,且這六名同學(xué)答題正確與否相互之間沒(méi)有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;(2)用表示甲班總得分,求隨機(jī)變量的概率分布和數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

轉(zhuǎn)化條件得,利用元素個(gè)數(shù)為n的集合真子集個(gè)數(shù)為個(gè)即可得解.【詳解】由題意得,,集合的真子集的個(gè)數(shù)為個(gè).故選:D.【點(diǎn)睛】本題考查了集合的化簡(jiǎn)和運(yùn)算,考查了集合真子集個(gè)數(shù)問(wèn)題,屬于基礎(chǔ)題.2、C【解析】

先求導(dǎo)函數(shù),函數(shù)在上單調(diào)遞減則恒成立,對(duì)導(dǎo)函數(shù)不等式換元成二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結(jié)合圖象可知,,解得故.故選:C.【點(diǎn)睛】本題考查求三角函數(shù)單調(diào)區(qū)間.求三角函數(shù)單調(diào)區(qū)間的兩種方法:(1)代換法:就是將比較復(fù)雜的三角函數(shù)含自變量的代數(shù)式整體當(dāng)作一個(gè)角(或),利用基本三角函數(shù)的單調(diào)性列不等式求解;(2)圖象法:畫(huà)出三角函數(shù)的正、余弦曲線,結(jié)合圖象求它的單調(diào)區(qū)間.3、C【解析】

根據(jù)橢圓的定義可得,,再利用余弦定理即可得到結(jié)論.【詳解】由題意,,,又,則,由余弦定理可得.故.故選:C.【點(diǎn)睛】本題考查橢圓的定義,考查余弦定理,考查運(yùn)算能力,屬于基礎(chǔ)題.4、B【解析】

先求出向量,的坐標(biāo),然后由可求出參數(shù)的值.【詳解】由向量,,則,,又,則,解得.故選:B【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算和模長(zhǎng)的運(yùn)算,屬于基礎(chǔ)題.5、B【解析】

據(jù)題意以菱形對(duì)角線交點(diǎn)為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,用坐標(biāo)表示出,再根據(jù)坐標(biāo)形式下向量的數(shù)量積運(yùn)算計(jì)算出結(jié)果.【詳解】設(shè)與交于點(diǎn),以為原點(diǎn),的方向?yàn)檩S,的方向?yàn)檩S,建立直角坐標(biāo)系,則,,,,,所以.故選:B.【點(diǎn)睛】本題考查建立平面直角坐標(biāo)系解決向量的數(shù)量積問(wèn)題,難度一般.長(zhǎng)方形、正方形、菱形中的向量數(shù)量積問(wèn)題,如果直接計(jì)算較麻煩可考慮用建系的方法求解.6、B【解析】

根據(jù)菱形中的邊角關(guān)系,利用余弦定理和數(shù)量積公式,即可求出結(jié)果.【詳解】如圖所示,菱形形的邊長(zhǎng)為2,,∴,∴,∴,且,∴,故選B.【點(diǎn)睛】本題主要考查了平面向量的數(shù)量積和余弦定理的應(yīng)用問(wèn)題,屬于基礎(chǔ)題..7、A【解析】

考慮既屬于又屬于的集合,即得.【詳解】.故選:【點(diǎn)睛】本題考查集合的交運(yùn)算,屬于基礎(chǔ)題.8、B【解析】

先設(shè)直線與圓相切于點(diǎn),根據(jù)題意,得到,再由,根據(jù)勾股定理求出,從而可得漸近線方程.【詳解】設(shè)直線與圓相切于點(diǎn),因?yàn)槭且詧A的直徑為斜邊的圓內(nèi)接三角形,所以,又因?yàn)閳A與直線的切點(diǎn)為,所以,又,所以,因此,因此有,所以,因此漸近線的方程為.故選B【點(diǎn)睛】本題主要考查雙曲線的漸近線方程,熟記雙曲線的簡(jiǎn)單性質(zhì)即可,屬于??碱}型.9、B【解析】

設(shè),,,根據(jù)向量線性運(yùn)算法則可表示出和;分別求解出和,,根據(jù)向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設(shè)棱長(zhǎng)為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項(xiàng):【點(diǎn)睛】本題考查異面直線所成角的求解,關(guān)鍵是能夠通過(guò)向量的線性運(yùn)算、數(shù)量積運(yùn)算將問(wèn)題轉(zhuǎn)化為向量夾角的求解問(wèn)題.10、D【解析】

根據(jù)的圖象可得的單調(diào)性,從而得到在相應(yīng)范圍上的符號(hào)和極值點(diǎn),據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個(gè)不同的零點(diǎn),且在這兩個(gè)零點(diǎn)的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點(diǎn)睛】本題考查導(dǎo)函數(shù)圖象的識(shí)別,此類問(wèn)題應(yīng)根據(jù)原函數(shù)的單調(diào)性來(lái)考慮導(dǎo)函數(shù)的符號(hào)與零點(diǎn)情況,本題屬于基礎(chǔ)題.11、C【解析】

首先,根據(jù)二倍角公式和輔助角公式化簡(jiǎn)函數(shù)解析式,根據(jù)所求函數(shù)的周期性,得到其周期為4,然后借助于三角函數(shù)的周期性確定其值即可.【詳解】解:.,,的周期為,,,,,..故選:C【點(diǎn)睛】本題重點(diǎn)考查了三角函數(shù)的圖象與性質(zhì)、三角恒等變換等知識(shí),掌握輔助角公式化簡(jiǎn)函數(shù)解析式是解題的關(guān)鍵,屬于中檔題.12、D【解析】

利用向量運(yùn)算可得,即,由為的中位線,得到,所以,再根據(jù)雙曲線定義即可求得離心率.【詳解】取的中點(diǎn),則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點(diǎn)睛】本題綜合考查向量運(yùn)算與雙曲線的相關(guān)性質(zhì),難度一般.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先確定關(guān)于x的方程當(dāng)a為何值時(shí)有4個(gè)不相等的實(shí)根,再將這四個(gè)根的平方和表示出來(lái),利用函數(shù)思想來(lái)判斷當(dāng)a為何值時(shí)這4個(gè)根的平方和存在最小值即可.【詳解】由題意,當(dāng)時(shí),,此時(shí),此時(shí)函數(shù)在單調(diào)遞減,在單調(diào)遞增,方程最多2個(gè)不相等的實(shí)根,舍;當(dāng)時(shí),函數(shù)圖象如下所示:從左到右方程,有4個(gè)不相等的實(shí)根,依次為,,,,即,由圖可知,故,且,,從而,令,顯然,,要使該式在時(shí)有最小值,則對(duì)稱軸,解得.綜上所述,實(shí)數(shù)a的取值范圍是.【點(diǎn)睛】本題考查了函數(shù)和方程的知識(shí),但需要一定的邏輯思維能力,屬于較難題.14、【解析】

根據(jù)球的表面積求得球的半徑,設(shè)球心到四棱錐底面的距離為,求得四棱錐的表達(dá)式,利用基本不等式求得體積的最大值.【詳解】由已知可得球的半徑,設(shè)球心到四棱錐底面的距離為,棱錐的高為,底面邊長(zhǎng)為,的體積,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故答案為:【點(diǎn)睛】本小題主要考查球的表面積有關(guān)計(jì)算,考查球的內(nèi)接四棱錐體積的最值的求法,屬于中檔題.15、【解析】

利用余弦定理可求得的值,進(jìn)而可得出的值,最后利用三角形的面積公式可得出的面積.【詳解】由余弦定理得,則,因此,的面積為.故答案為:;.【點(diǎn)睛】本題考查利用余弦定理解三角形,同時(shí)也考查了三角形面積的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.16、29【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為以原點(diǎn)為圓心的圓,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖:聯(lián)立,解得,目標(biāo)函數(shù)是以原點(diǎn)為圓心,以為半徑的圓,由圖可知,此圓經(jīng)過(guò)點(diǎn)A時(shí),半徑最大,此時(shí)也最大,最大值為.所以本題答案為29.【點(diǎn)睛】線性規(guī)劃問(wèn)題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開(kāi)放區(qū)域、分界線是實(shí)線還是虛線,其次確定目標(biāo)函數(shù)的幾何意義,是求直線的截距、兩點(diǎn)間距離的平方、直線的斜率、還是點(diǎn)到直線的距離等等,最后結(jié)合圖形確定目標(biāo)函數(shù)最值取法、值域范圍.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)函數(shù)在上單調(diào)遞減,在單調(diào)遞增;(Ⅱ);(Ⅲ)證明見(jiàn)解析.【解析】

(Ⅰ)先求出函數(shù)f(x)的導(dǎo)數(shù),通過(guò)解關(guān)于導(dǎo)數(shù)的不等式,從而求出函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè)g(x)=f(x)﹣ax,先求出函數(shù)g(x)的導(dǎo)數(shù),通過(guò)討論a的范圍,得到函數(shù)的單調(diào)性,從而求出a的最小值;(Ⅲ)先求出數(shù)列是以為首項(xiàng),1為公差的等差數(shù)列,,,問(wèn)題轉(zhuǎn)化為證明:,通過(guò)換元法或數(shù)學(xué)歸納法進(jìn)行證明即可.【詳解】解:(Ⅰ)f(x)的定義域?yàn)椋ī?,+∞),,當(dāng)時(shí),f′(x)<2,當(dāng)時(shí),f′(x)>2,所以函數(shù)f(x)在上單調(diào)遞減,在單調(diào)遞增.(Ⅱ)設(shè),則,因?yàn)閤≥2,故,(?。┊?dāng)a≥1時(shí),1﹣a≤2,g′(x)≤2,所以g(x)在[2,+∞)單調(diào)遞減,而g(2)=2,所以對(duì)所有的x≥2,g(x)≤2,即f(x)≤ax;(ⅱ)當(dāng)1<a<1時(shí),2<1﹣a<1,若,則g′(x)>2,g(x)單調(diào)遞增,而g(2)=2,所以當(dāng)時(shí),g(x)>2,即f(x)>ax;(ⅲ)當(dāng)a≤1時(shí),1﹣a≥1,g′(x)>2,所以g(x)在[2,+∞)單調(diào)遞增,而g(2)=2,所以對(duì)所有的x>2,g(x)>2,即f(x)>ax;綜上,a的最小值為1.(Ⅲ)由(1﹣an+1)(1+an)=1得,an﹣an+1=an?an+1,由a1=1得,an≠2,所以,數(shù)列是以為首項(xiàng),1為公差的等差數(shù)列,故,,,?,由(Ⅱ)知a=1時(shí),,x>2,即,x>2.法一:令,得,即因?yàn)?,所以,故.法二?下面用數(shù)學(xué)歸納法證明.(1)當(dāng)n=1時(shí),令x=1代入,即得,不等式成立(1)假設(shè)n=k(k∈N*,k≥1)時(shí),不等式成立,即,則n=k+1時(shí),,令代入,得,即:,由(1)(1)可知不等式對(duì)任何n∈N*都成立.故.考點(diǎn):1利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;1、利用導(dǎo)數(shù)研究函數(shù)的最值;3、數(shù)列的通項(xiàng)公式;4、數(shù)列的前項(xiàng)和;5、不等式的證明.18、(1),函數(shù)的單調(diào)遞增區(qū)間為;(2).【解析】

(1)運(yùn)用降冪公式和輔助角公式,把函數(shù)的解析式化為正弦型函數(shù)解析式形式,根據(jù)已知,可以求出的值,再結(jié)合正弦型函數(shù)的性質(zhì)求出函數(shù)的單調(diào)遞增區(qū)間;(2)由(1)結(jié)合已知,可以求出角的值,通過(guò)正弦定理把問(wèn)題的取值范圍轉(zhuǎn)化為兩邊對(duì)角的正弦值的比值的取值范圍,結(jié)合已知是銳角三角形,三角形內(nèi)角和定理,最后求出的取值范圍.【詳解】解:(1)由已知,所以因此令得因此函數(shù)的單調(diào)遞增區(qū)間為(2)由已知,∴由得,因此所以因?yàn)闉殇J角三角形,所以,解得因此,那么【點(diǎn)睛】本題考查了降冪公式、輔助角公式,考查了正弦定理,考查了正弦型三角函數(shù)的單調(diào)性,考查了數(shù)學(xué)運(yùn)算能力.19、(1)(2)【解析】

(1)利用零點(diǎn)分段法,求得不等式的解集.(2)先求得,即,再根據(jù)“的代換”的方法,結(jié)合基本不等式,求得的最小值.【詳解】(1)當(dāng)時(shí),,即,無(wú)解;當(dāng)時(shí),,即,得;當(dāng)時(shí),,即,得.故所求不等式的解集為.(2)因?yàn)?,所以,則,.當(dāng)且僅當(dāng)即時(shí)取等號(hào).故的最小值為.【點(diǎn)睛】本小題主要考查零點(diǎn)分段法解絕對(duì)值不等式,考查利用基本不等式求最值,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.20、(1)(2)【解析】

(1)根據(jù)三角形面積公式和正弦定理可得答案;(2)根據(jù)兩角余弦公式可得,即可求出,再根據(jù)正弦定理可得,根據(jù)余弦定理即可求出,問(wèn)題得以解決.【詳解】(1)由三角形的面積公式可得,,由正弦定理可得,,;(2),,,,,則由,可得:,由,可得:,,可得:,經(jīng)檢驗(yàn)符合題意,三角形的周長(zhǎng).(實(shí)際上可解得,符合三邊關(guān)系).【點(diǎn)睛】本題考查了三角形的面積公式、兩角和的余弦公式、誘導(dǎo)公式,考查正弦定理,余弦定理在解三角形中的綜合應(yīng)用,考查了學(xué)生的運(yùn)算能力,考查了轉(zhuǎn)化思想,屬于中檔題.21、(1)見(jiàn)解析;(2)【解析】

(1)取的中點(diǎn),連接,根據(jù)中位線的方法證明四邊形是平行四邊形.再證明與

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論