湖南工商大學(xué)《計(jì)算智能》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁
湖南工商大學(xué)《計(jì)算智能》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁
湖南工商大學(xué)《計(jì)算智能》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁
湖南工商大學(xué)《計(jì)算智能》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁
湖南工商大學(xué)《計(jì)算智能》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁湖南工商大學(xué)《計(jì)算智能》

2022-2023學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能在社交媒體的內(nèi)容管理中發(fā)揮作用。假設(shè)一個(gè)社交媒體平臺要利用人工智能過濾不良信息,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.基于自然語言處理技術(shù)和機(jī)器學(xué)習(xí)算法,識別不良內(nèi)容B.不斷學(xué)習(xí)和更新不良信息的模式,提高過濾的準(zhǔn)確性C.人工智能過濾系統(tǒng)能夠完全杜絕不良信息的出現(xiàn),無需人工監(jiān)督D.平衡過濾的嚴(yán)格程度和用戶體驗(yàn),避免誤判正常內(nèi)容2、人工智能在智能客服領(lǐng)域的應(yīng)用越來越廣泛。假設(shè)要構(gòu)建一個(gè)能夠回答用戶各種問題的智能客服系統(tǒng),需要考慮以下幾個(gè)方面。以下關(guān)于提高回答準(zhǔn)確性的方法,哪一項(xiàng)是最重要的?()A.建立一個(gè)龐大的知識庫,涵蓋各種常見問題和答案B.運(yùn)用自然語言生成技術(shù),生成更加自然流暢的回答C.不斷收集用戶的反饋,對系統(tǒng)進(jìn)行優(yōu)化和改進(jìn)D.使用多種語言模型進(jìn)行融合,提高回答的多樣性3、在人工智能的自動(dòng)駕駛道德決策中,假設(shè)車輛面臨一個(gè)不可避免的碰撞場景,需要在保護(hù)車內(nèi)乘客和避免傷害行人之間做出選擇。以下哪種決策原則在倫理上更被接受?()A.優(yōu)先保護(hù)車內(nèi)乘客的生命安全B.隨機(jī)選擇保護(hù)對象C.基于最大多數(shù)人的利益進(jìn)行決策D.這是一個(gè)無法確定的道德困境,沒有明確的決策原則4、人工智能中的模型評估指標(biāo)對于衡量模型性能至關(guān)重要。假設(shè)要評估一個(gè)圖像分類模型的性能,以下關(guān)于評估指標(biāo)的描述,正確的是:()A.準(zhǔn)確率是唯一可靠的評估指標(biāo),能夠全面反映模型的性能B.召回率和精確率相互獨(dú)立,沒有關(guān)聯(lián)C.F1值綜合考慮了召回率和精確率,能夠更全面地評估模型D.混淆矩陣只適用于二分類問題,對于多分類問題沒有作用5、人工智能在物流配送中的路徑規(guī)劃方面具有應(yīng)用潛力。假設(shè)要為快遞配送車輛規(guī)劃最優(yōu)路徑,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.考慮交通狀況、貨物重量和配送時(shí)間等因素,優(yōu)化路徑選擇B.利用啟發(fā)式算法可以在較短時(shí)間內(nèi)找到近似最優(yōu)的配送路徑C.人工智能規(guī)劃的路徑一定是最短的,不會(huì)受到任何突發(fā)情況的影響D.實(shí)時(shí)更新路況信息,動(dòng)態(tài)調(diào)整配送路徑,提高配送效率6、當(dāng)利用人工智能進(jìn)行金融風(fēng)險(xiǎn)評估,例如評估信用風(fēng)險(xiǎn)和市場風(fēng)險(xiǎn),以下哪種模型和特征可能是重要的組成部分?()A.邏輯回歸模型和財(cái)務(wù)指標(biāo)B.決策樹模型和交易數(shù)據(jù)C.深度學(xué)習(xí)模型和宏觀經(jīng)濟(jì)數(shù)據(jù)D.以上都是7、在強(qiáng)化學(xué)習(xí)中,“Q-learning”算法通過估計(jì)什么來進(jìn)行決策?()A.狀態(tài)價(jià)值B.動(dòng)作價(jià)值C.策略D.獎(jiǎng)勵(lì)8、人工智能在自動(dòng)駕駛領(lǐng)域有重要的應(yīng)用。假設(shè)一輛自動(dòng)駕駛汽車在行駛過程中需要做出決策,以下關(guān)于自動(dòng)駕駛中的人工智能決策的描述,正確的是:()A.自動(dòng)駕駛汽車的決策完全依賴于預(yù)先設(shè)定的規(guī)則和算法,不具備自主學(xué)習(xí)和適應(yīng)能力B.復(fù)雜的交通環(huán)境和意外情況不會(huì)對自動(dòng)駕駛汽車的決策造成困難,因?yàn)槠渚哂型昝赖母兄皖A(yù)測能力C.自動(dòng)駕駛汽車在決策時(shí)需要綜合考慮多種因素,如交通規(guī)則、行人行為和車輛狀態(tài)等D.人類駕駛員的干預(yù)對自動(dòng)駕駛汽車的決策沒有任何幫助,反而可能導(dǎo)致系統(tǒng)混亂9、人工智能在能源管理領(lǐng)域有潛在應(yīng)用。假設(shè)一個(gè)智能電網(wǎng)要利用人工智能優(yōu)化電力分配,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.分析用戶用電模式和需求,實(shí)現(xiàn)精準(zhǔn)的電力調(diào)度B.預(yù)測電力負(fù)荷變化,提前做好發(fā)電和儲能規(guī)劃C.人工智能可以完全自主地管理電網(wǎng),不需要人工干預(yù)和調(diào)控D.考慮可再生能源的波動(dòng)性,優(yōu)化能源組合,提高電網(wǎng)穩(wěn)定性10、在人工智能的圖像識別任務(wù)中,對抗樣本的存在對模型的安全性構(gòu)成威脅。假設(shè)一個(gè)圖像識別模型容易受到對抗樣本的攻擊,導(dǎo)致錯(cuò)誤的分類結(jié)果。以下哪種方法在提高模型對對抗樣本的魯棒性方面最為有效?()A.數(shù)據(jù)增強(qiáng)B.模型正則化C.對抗訓(xùn)練D.以上方法綜合運(yùn)用11、人工智能在藝術(shù)創(chuàng)作領(lǐng)域也有所涉足,例如音樂生成和圖像創(chuàng)作。以下關(guān)于人工智能在藝術(shù)創(chuàng)作中的描述,不正確的是()A.可以根據(jù)給定的風(fēng)格和主題生成新的音樂作品和圖像B.人工智能創(chuàng)作的藝術(shù)作品具有獨(dú)特的創(chuàng)新性和表現(xiàn)力C.人工智能在藝術(shù)創(chuàng)作中完全取代了人類藝術(shù)家的創(chuàng)造力和情感表達(dá)D.引發(fā)了關(guān)于藝術(shù)本質(zhì)和創(chuàng)造力的思考和討論12、人工智能在農(nóng)業(yè)領(lǐng)域的精準(zhǔn)種植方面有潛在應(yīng)用。假設(shè)利用人工智能監(jiān)測農(nóng)作物的生長狀況,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.通過圖像識別和傳感器數(shù)據(jù),實(shí)時(shí)獲取農(nóng)作物的生長參數(shù)B.基于數(shù)據(jù)分析預(yù)測病蟲害的發(fā)生,及時(shí)采取防治措施C.人工智能可以完全自主地進(jìn)行農(nóng)作物的種植和管理,無需人工干預(yù)D.結(jié)合氣象數(shù)據(jù)優(yōu)化灌溉和施肥方案,提高資源利用效率13、假設(shè)在一個(gè)智能農(nóng)業(yè)的應(yīng)用中,需要利用人工智能技術(shù)來監(jiān)測農(nóng)作物的生長狀況并預(yù)測病蟲害的發(fā)生,以下哪種數(shù)據(jù)源和分析方法可能是重要的組成部分?()A.衛(wèi)星圖像和圖像分析B.傳感器數(shù)據(jù)和時(shí)間序列分析C.氣象數(shù)據(jù)和機(jī)器學(xué)習(xí)模型D.以上都是14、人工智能在物流領(lǐng)域的應(yīng)用能夠提高物流效率和服務(wù)質(zhì)量。以下關(guān)于人工智能在物流應(yīng)用的敘述,不正確的是()A.可以通過路徑規(guī)劃算法優(yōu)化貨物運(yùn)輸路線,降低運(yùn)輸成本B.利用圖像識別技術(shù)實(shí)現(xiàn)貨物的自動(dòng)分揀和識別C.人工智能在物流領(lǐng)域的應(yīng)用面臨數(shù)據(jù)安全和隱私保護(hù)等挑戰(zhàn)D.物流領(lǐng)域?qū)θ斯ぶ悄芗夹g(shù)的需求不高,傳統(tǒng)的管理方法已經(jīng)足夠滿足需求15、在人工智能的情感分析任務(wù)中,需要判斷文本所表達(dá)的情感傾向。假設(shè)要分析社交媒體上用戶對某一產(chǎn)品的評價(jià)情感,以下關(guān)于情感分析的描述,正確的是:()A.僅僅依靠關(guān)鍵詞匹配就能夠準(zhǔn)確判斷文本的情感傾向B.深度學(xué)習(xí)模型在情感分析中總是比傳統(tǒng)的機(jī)器學(xué)習(xí)方法更準(zhǔn)確C.考慮文本的上下文、語義和語法結(jié)構(gòu)等多方面信息,能夠提高情感分析的準(zhǔn)確性D.情感分析的結(jié)果不受文本的語言風(fēng)格和表達(dá)方式的影響16、人工智能中的元學(xué)習(xí)技術(shù)旨在讓模型能夠快速適應(yīng)新的任務(wù)和數(shù)據(jù)分布。假設(shè)要開發(fā)一個(gè)能夠在不同領(lǐng)域的小樣本學(xué)習(xí)任務(wù)中表現(xiàn)良好的元學(xué)習(xí)模型,以下哪種元學(xué)習(xí)方法在泛化能力和學(xué)習(xí)效率方面具有更大的潛力?()A.基于模型的元學(xué)習(xí)B.基于優(yōu)化的元學(xué)習(xí)C.基于度量的元學(xué)習(xí)D.以上方法結(jié)合使用17、在一個(gè)利用人工智能進(jìn)行智能物流配送的系統(tǒng)中,為了實(shí)現(xiàn)高效的路徑規(guī)劃和車輛調(diào)度,以下哪種算法和技術(shù)可能會(huì)被運(yùn)用?()A.遺傳算法B.蟻群算法C.模擬退火算法D.以上都是18、當(dāng)利用人工智能進(jìn)行語音合成,使合成的語音聽起來更加自然和富有情感,以下哪種方法可能是重點(diǎn)研究和改進(jìn)的方向?()A.改進(jìn)聲學(xué)模型B.優(yōu)化韻律模型C.提升文本分析精度D.以上都是19、在人工智能的圖像超分辨率重建任務(wù)中,例如將低分辨率圖像恢復(fù)為高分辨率圖像,以下哪種技術(shù)和網(wǎng)絡(luò)結(jié)構(gòu)可能會(huì)發(fā)揮重要作用?()A.殘差網(wǎng)絡(luò)B.注意力機(jī)制C.對抗生成網(wǎng)絡(luò)D.以上都是20、在人工智能的強(qiáng)化學(xué)習(xí)中,假設(shè)智能體在探索環(huán)境時(shí)面臨高風(fēng)險(xiǎn)的動(dòng)作選擇,以下哪種策略能夠平衡探索和利用,以實(shí)現(xiàn)更好的學(xué)習(xí)效果?()A.ε-貪心策略,以一定概率隨機(jī)選擇動(dòng)作B.始終選擇最優(yōu)動(dòng)作,不進(jìn)行探索C.隨機(jī)選擇動(dòng)作,不考慮之前的經(jīng)驗(yàn)D.只在初始階段進(jìn)行探索,之后完全利用21、在人工智能的自然語言生成任務(wù)中,需要生成連貫和有意義的文本。假設(shè)要開發(fā)一個(gè)能夠自動(dòng)生成新聞報(bào)道的系統(tǒng),以下關(guān)于自然語言生成的描述,正確的是:()A.隨機(jī)生成單詞和句子的組合就能夠產(chǎn)生有邏輯和可讀性的新聞報(bào)道B.僅僅依靠語言模型的概率預(yù)測,不考慮語義和上下文信息,也能生成高質(zhì)量的文本C.利用深度學(xué)習(xí)模型學(xué)習(xí)大量的新聞文本數(shù)據(jù),并結(jié)合語義理解和規(guī)劃,可以生成較為準(zhǔn)確和流暢的新聞報(bào)道D.自然語言生成系統(tǒng)不需要考慮語言的風(fēng)格和體裁,能夠生成通用的文本22、人工智能中的智能客服可以回答用戶的各種問題。假設(shè)我們要評估一個(gè)智能客服的性能,以下關(guān)于評估指標(biāo)的說法,哪一項(xiàng)是不正確的?()A.回答的準(zhǔn)確性B.響應(yīng)的速度C.語言的優(yōu)美程度D.能夠解決問題的復(fù)雜程度23、在人工智能的研究中,可解釋性是一個(gè)重要的問題。假設(shè)我們訓(xùn)練了一個(gè)復(fù)雜的深度學(xué)習(xí)模型用于醫(yī)療診斷,但是其決策過程難以理解。那么,以下關(guān)于模型可解釋性的說法,哪一項(xiàng)是不正確的?()A.可解釋性對于建立用戶信任至關(guān)重要B.一些可視化技術(shù)可以幫助理解模型的內(nèi)部工作機(jī)制C.為了追求高精度,模型的可解釋性可以被犧牲D.可解釋性有助于發(fā)現(xiàn)模型可能存在的偏差和錯(cuò)誤24、自然語言處理是人工智能的重要應(yīng)用領(lǐng)域之一。假設(shè)我們要開發(fā)一個(gè)能夠自動(dòng)回答用戶問題的智能客服系統(tǒng),需要對大量的文本數(shù)據(jù)進(jìn)行學(xué)習(xí)和理解。在這個(gè)過程中,詞向量模型如Word2Vec和GloVe起到了關(guān)鍵作用。那么,關(guān)于詞向量模型,以下說法哪一項(xiàng)是不準(zhǔn)確的?()A.能夠?qū)卧~表示為低維的實(shí)數(shù)向量,捕捉單詞之間的語義關(guān)系B.可以通過對大規(guī)模語料庫的無監(jiān)督學(xué)習(xí)得到C.不同的詞向量模型在處理多義詞時(shí)效果都很好D.詞向量的計(jì)算可以基于單詞的上下文信息25、在人工智能的機(jī)器翻譯任務(wù)中,需要將一種語言翻譯成另一種語言。假設(shè)要翻譯的文本涉及專業(yè)領(lǐng)域的術(shù)語和特定的文化背景知識。以下哪種方法能夠提高翻譯的準(zhǔn)確性和專業(yè)性?()A.使用通用的機(jī)器翻譯模型,不進(jìn)行任何定制B.結(jié)合領(lǐng)域詞典和知識圖譜進(jìn)行翻譯C.依靠人工翻譯,不使用機(jī)器翻譯D.隨機(jī)選擇翻譯結(jié)果,不考慮準(zhǔn)確性26、在人工智能的研究中,強(qiáng)化學(xué)習(xí)被廣泛應(yīng)用于智能體的決策和優(yōu)化問題。假設(shè)一個(gè)智能機(jī)器人需要在復(fù)雜的環(huán)境中學(xué)習(xí)如何行走并避開障礙物,以最快的速度到達(dá)目標(biāo)位置。在這種情況下,以下哪種強(qiáng)化學(xué)習(xí)算法能夠使機(jī)器人更快地學(xué)習(xí)到有效的策略,同時(shí)具有較好的泛化能力?()A.Q-learningB.SARSAC.策略梯度算法D.蒙特卡羅方法27、在人工智能的優(yōu)化算法中,隨機(jī)梯度下降(SGD)是常用的方法之一。假設(shè)在訓(xùn)練一個(gè)深度學(xué)習(xí)模型時(shí),發(fā)現(xiàn)模型收斂速度較慢。以下哪種改進(jìn)的SGD變種或優(yōu)化策略能夠加快模型的收斂速度,同時(shí)避免陷入局部最優(yōu)解?()A.AdagradB.AdadeltaC.RMSPropD.以上策略結(jié)合使用28、在人工智能的智能客服中,以下哪個(gè)能力對于提高用戶滿意度最重要?()A.快速準(zhǔn)確地回答問題B.理解用戶的情感和意圖C.提供個(gè)性化的服務(wù)D.主動(dòng)引導(dǎo)用戶進(jìn)行交流29、在人工智能的發(fā)展中,可解釋性是一個(gè)重要的研究方向。假設(shè)一個(gè)用于信用評估的人工智能模型,以下關(guān)于模型可解釋性的描述,正確的是:()A.復(fù)雜的人工智能模型不需要具備可解釋性,只要預(yù)測結(jié)果準(zhǔn)確就行B.可解釋性只對研究人員有意義,對于實(shí)際應(yīng)用中的用戶不重要C.通過特征重要性分析和可視化等方法,可以提高人工智能模型的可解釋性,增強(qiáng)用戶對模型決策的信任D.所有的人工智能模型都可以被完全解釋清楚,不存在無法解釋的黑盒部分30、人工智能中的聯(lián)邦學(xué)習(xí)是一種新興的技術(shù),旨在保護(hù)數(shù)據(jù)隱私的前提下進(jìn)行模型訓(xùn)練。假設(shè)多個(gè)機(jī)構(gòu)想要聯(lián)合訓(xùn)練一個(gè)人工智能模型,但又不希望共享各自的數(shù)據(jù)。那么,聯(lián)邦學(xué)習(xí)是如何實(shí)現(xiàn)這一目標(biāo)的?()A.將所有數(shù)據(jù)集中到一個(gè)中心服務(wù)器進(jìn)行訓(xùn)練B.每個(gè)機(jī)構(gòu)只上傳模型參數(shù),在云端進(jìn)行聚合C.通過加密技術(shù)直接共享原始數(shù)據(jù)進(jìn)行訓(xùn)練D.不需要數(shù)據(jù)交互,各自獨(dú)立訓(xùn)練模型二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)借助TensorFlow構(gòu)建一個(gè)深度Q網(wǎng)絡(luò)(DQN),讓智能體學(xué)習(xí)在Atari游戲中取得高分。優(yōu)化網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練參數(shù),展示智能體的游戲得分提升情況。2、(本題5分)在Python中,運(yùn)用人工神經(jīng)網(wǎng)絡(luò)(ANN)解決一個(gè)回歸問題。生成一組模擬數(shù)據(jù),構(gòu)建ANN模型進(jìn)行擬合,分析模型的預(yù)測性能和誤差。3、(本題5分)在Python中,運(yùn)用進(jìn)化策略優(yōu)化一個(gè)函數(shù)的參數(shù)。定義適應(yīng)度函數(shù)和變異操作,展示進(jìn)化過程和最終的優(yōu)化結(jié)果。4、(本題5分)運(yùn)用Python中的PyTorch框架,構(gòu)建一個(gè)基于Transformer架構(gòu)的機(jī)器閱讀理解模型,回答文章中的問題。5、(本題5分)利用Python的PyTorch庫,構(gòu)建一個(gè)基于注意力機(jī)制的Transformer模型,對長篇小說進(jìn)行章節(jié)內(nèi)容的自動(dòng)摘要生成。對比不同的注意力機(jī)制和訓(xùn)練策略對生成效果的影響。三、簡答

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論