代數(shù)式的分類_第1頁
代數(shù)式的分類_第2頁
代數(shù)式的分類_第3頁
代數(shù)式的分類_第4頁
代數(shù)式的分類_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2021/6/271一、代數(shù)式的分類:基本概念:2021/6/272代數(shù)式:課標(biāo)要求(有的放矢)

①在現(xiàn)實情境中進一步理解用字母表示數(shù)的意義。②能分析簡單問題的數(shù)量關(guān)系,并用代數(shù)式表示。③能解釋一些簡單代數(shù)式的實際背景或幾何意義。④會求代數(shù)式的值;能根據(jù)特定的問題查閱資料,找到所需要的公式,并會代入具體的值進行計算。2021/6/273整式與分式

①了解整數(shù)指數(shù)冪的意義和基本性質(zhì),會用科學(xué)記數(shù)法表示數(shù)(包括在計算器上表示)。②了解整式的概念,會進行簡單的整式加減運算;會進行簡單的整式乘法運算、(其中的多項式相乘僅指一次式相乘)。2021/6/274

③會推導(dǎo)乘法公式:

(a十b)(a—b)=a2—b2

;(a十b)2=a2十2ab十b2,了解公式的幾何背景,并能進行簡單計算。

④會用提公因式法、公式法(直接用公式不超過二次)進行因式分解(指數(shù)是正整數(shù))。⑤了解分式的概念,會利用分式的基本性質(zhì)進行約分和通分,會進行簡單的分式加、減、乘、除運算。2021/6/275二、整式的概念都是數(shù)與字母的積的代數(shù)式叫做單項式,單獨的一個數(shù)或字母也是單項式.一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù),單獨一個非0數(shù)的次數(shù)是0.幾個單項式的和叫做多項式.一個多項式中,次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù).單項式和多項式統(tǒng)稱整式.單項式中數(shù)字因數(shù)叫做單項式的系數(shù).2021/6/276三、整式的運算1.整式的加減運算法則及步驟:(1)列式;(2)去括號;(3)合并同類項.2.整式的乘法:(1)同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.即am·an=am+n(m.n都是正整數(shù)).(2)冪的乘方,底數(shù)不變,指數(shù)相乘.即(am)n=amn(m,n都是正整數(shù))(3)積的乘方,等于把積中每個因式分別乘方,再把冪相乘.即(ab)n=anbn(n是正整數(shù))2021/6/277三、整式的運算(4)同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.am÷an=am-n(a≠0,m,n是正整數(shù),且m>n).(5)單項式乘以單項式的運算性質(zhì):單項式與單項式相乘,把它們的系數(shù),相同字母的冪分別相乘,其余字母連同它的指數(shù)不變用為積的一個因式.(6)單項式與多項式相乘的運算性質(zhì)單項式與多項式相乘,就是根據(jù)分配律用單項式的每一項去乘多項式的每一項,再把所得的積相加.(7)多項式與多項式相乘的運算性質(zhì)多項式與多項式相乘,先用一個多項式的每一項分別去乘另一個多項式的每一項,再把所得的積相加.2021/6/278四、乘法公式(8)平方差公式:(a+b)(a-b)=a2-b2.兩數(shù)和與這兩數(shù)的差的積,等于它們的平方差.(9)完全平方公式(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.兩數(shù)和(或兩數(shù)差)的平方等于它們的平方和加上(或減去)它們積的2倍..(10)特二次乘法公式:(x+a)(x+b)=x2+(a+b)x+ab.(11)完全平方公式的推廣:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.(a+b)3=a3+3a2b+3ab2+b3.(a-b)3=a3-3a2b+3ab2-b3.2021/6/279五、0指數(shù)、負整數(shù)指數(shù)(1)a0=1(a≠0).即任何不等于0的數(shù)的0次冪都等于1.a-p=(a≠0,p是正整數(shù)).即任何不等于0的數(shù)的-p次冪等于這個數(shù)的p次冪的倒數(shù).2021/6/2710六、分解因式的概念1.把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.①.分解因式與整式乘法的關(guān)系:是互為逆變形.②從左到右是分解因式其特點是:由和差形式(多項式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉(zhuǎn)化成和差形式(多項式).2.注意:①分解的結(jié)果一定是幾個整式的乘積的形式,若有相同的因式,則寫成冪的形式.②每一個因式要分解到不能分解為止.

分解因式

如:a2-b2

(a+b)(a-b)

整式乘法2021/6/2711七、分解因式的方法1.多項式各項都含有的相同的因式,叫做這個多項式各項的公因式多項式公因式的構(gòu)成:各項系數(shù)的最大公約數(shù),相同因式的最低次冪.(1)提公因式法:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式的積的.這種分解因式的方法叫做提公因式法.提公因式法分解因式與單項式乘多項式的關(guān)系:m(a+b+c)ma+mb+mc單項式與多項式相乘

提公因式法2021/6/2712七、分解因式的方法(2)運用公式法:①平方差公式:a2-b2=(a+b)(a-b).②完全平方公式:a2+2ab+b2=(a+b)2;

a2-2ab+b2=(a-b)2;(3)十字相乘法:代數(shù)式:a2+2ab+b2及a2-2ab+b2叫做完全平方式:2021/6/2713八、分式的概念其中,A叫做分式的分子,B叫做分式的分母。2.整式和分式統(tǒng)稱有理式.①整式和分式的區(qū)別在于:除式B中是否含有字母.②分式的隱含條件是:分式的分母不等于0.③分式的值為0的條件是:分子為0且分母不等于0.1.如果整式A除以整式B,可以表示成的形式.且除式B中含有字母,那么稱式子為分式(fraction).2021/6/2714九、分式的基本性質(zhì)1.分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個不等于零的整式,分式的值不變,用式子表示是:2.約分與通分(1)最大公因式的構(gòu)成:①分子分母系數(shù)的最大公約數(shù);②分子分母中相同因式的最低次冪.(2)最簡公分母的構(gòu)成:①各分母系數(shù)的最小公倍數(shù);②各分母中所有不同因式的最高次冪.或(其中M是不等于零的整式)2021/6/2715十、分式的運算1.分式的乘除法法則:(1)兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;(2)兩個分式相除,把除式的分子分母顛倒位置后,再與被除式相乘.(3)分式乘方:把分子分母各自乘方.20

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論