湖北省普通高中協(xié)作體2025屆高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第1頁(yè)
湖北省普通高中協(xié)作體2025屆高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第2頁(yè)
湖北省普通高中協(xié)作體2025屆高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第3頁(yè)
湖北省普通高中協(xié)作體2025屆高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第4頁(yè)
湖北省普通高中協(xié)作體2025屆高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北省普通高中協(xié)作體2025屆高三第三次測(cè)評(píng)數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù).若存在實(shí)數(shù),且,使得,則實(shí)數(shù)a的取值范圍為()A. B. C. D.2.已知復(fù)數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實(shí)數(shù)a=()A. B. C.2 D.﹣23.在平行六面體中,M為與的交點(diǎn),若,,則與相等的向量是()A. B. C. D.4.在直三棱柱中,己知,,,則異面直線(xiàn)與所成的角為()A. B. C. D.5.若實(shí)數(shù)、滿(mǎn)足,則的最小值是()A. B. C. D.6.已知等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差為()A. B. C. D.7.已知橢圓的左、右焦點(diǎn)分別為、,過(guò)點(diǎn)的直線(xiàn)與橢圓交于、兩點(diǎn).若的內(nèi)切圓與線(xiàn)段在其中點(diǎn)處相切,與相切于點(diǎn),則橢圓的離心率為()A. B. C. D.8.根據(jù)黨中央關(guān)于“精準(zhǔn)”脫貧的要求,我市某農(nóng)業(yè)經(jīng)濟(jì)部門(mén)派四位專(zhuān)家對(duì)三個(gè)縣區(qū)進(jìn)行調(diào)研,每個(gè)縣區(qū)至少派一位專(zhuān)家,則甲,乙兩位專(zhuān)家派遣至同一縣區(qū)的概率為()A. B. C. D.9.已知雙曲線(xiàn)的實(shí)軸長(zhǎng)為,離心率為,、分別為雙曲線(xiàn)的左、右焦點(diǎn),點(diǎn)在雙曲線(xiàn)上運(yùn)動(dòng),若為銳角三角形,則的取值范圍是()A. B. C. D.10.如圖,點(diǎn)E是正方體ABCD-A1B1C1D1的棱DD1的中點(diǎn),點(diǎn)F,M分別在線(xiàn)段AC,BD1(不包含端點(diǎn))上運(yùn)動(dòng),則()A.在點(diǎn)F的運(yùn)動(dòng)過(guò)程中,存在EF//BC1B.在點(diǎn)M的運(yùn)動(dòng)過(guò)程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值11.在中,角的對(duì)邊分別為,,若,,且,則的面積為()A. B. C. D.12.在中,點(diǎn)D是線(xiàn)段BC上任意一點(diǎn),,,則()A. B.-2 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.若變量,滿(mǎn)足約束條件則的最大值為_(kāi)_______.14.已知數(shù)列的前項(xiàng)和為,且成等差數(shù)列,,數(shù)列的前項(xiàng)和為,則滿(mǎn)足的最小正整數(shù)的值為_(kāi)_____________.15.滿(mǎn)足約束條件的目標(biāo)函數(shù)的最小值是.16.已知橢圓,,若橢圓上存在點(diǎn)使得為等邊三角形(為原點(diǎn)),則橢圓的離心率為_(kāi)________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)的零點(diǎn);(2)設(shè)函數(shù)的圖象與函數(shù)的圖象交于,兩點(diǎn),求證:;(3)若,且不等式對(duì)一切正實(shí)數(shù)x恒成立,求k的取值范圍.18.(12分)已知函數(shù).(1)解不等式;(2)若,,,求證:.19.(12分)如圖,設(shè)橢圓:,長(zhǎng)軸的右端點(diǎn)與拋物線(xiàn):的焦點(diǎn)重合,且橢圓的離心率是.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)過(guò)作直線(xiàn)交拋物線(xiàn)于,兩點(diǎn),過(guò)且與直線(xiàn)垂直的直線(xiàn)交橢圓于另一點(diǎn),求面積的最小值,以及取到最小值時(shí)直線(xiàn)的方程.20.(12分)在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)把曲線(xiàn)向下平移個(gè)單位,然后各點(diǎn)橫坐標(biāo)變?yōu)樵瓉?lái)的倍得到曲線(xiàn)(縱坐標(biāo)不變),設(shè)點(diǎn)是曲線(xiàn)上的一個(gè)動(dòng)點(diǎn),求它到直線(xiàn)的距離的最小值.21.(12分)已知凸邊形的面積為1,邊長(zhǎng),,其內(nèi)部一點(diǎn)到邊的距離分別為.求證:.22.(10分)等差數(shù)列中,.(1)求的通項(xiàng)公式;(2)設(shè),記為數(shù)列前項(xiàng)的和,若,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

首先對(duì)函數(shù)求導(dǎo),利用導(dǎo)數(shù)的符號(hào)分析函數(shù)的單調(diào)性和函數(shù)的極值,根據(jù)題意,列出參數(shù)所滿(mǎn)足的不等關(guān)系,求得結(jié)果.【詳解】,令,得,.其單調(diào)性及極值情況如下:x0+0_0+極大值極小值若存在,使得,則(如圖1)或(如圖2).(圖1)(圖2)于是可得,故選:D.【點(diǎn)睛】該題考查的是有關(guān)根據(jù)函數(shù)值的關(guān)系求參數(shù)的取值范圍的問(wèn)題,涉及到的知識(shí)點(diǎn)有利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,畫(huà)出圖象數(shù)形結(jié)合,屬于較難題目.2、D【解析】

化簡(jiǎn)z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因?yàn)閦=(1+2i)(1+ai)=,又因?yàn)閦∈R,所以,解得a=-2.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算及概念,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.3、D【解析】

根據(jù)空間向量的線(xiàn)性運(yùn)算,用作基底表示即可得解.【詳解】根據(jù)空間向量的線(xiàn)性運(yùn)算可知因?yàn)?,則即,故選:D.【點(diǎn)睛】本題考查了空間向量的線(xiàn)性運(yùn)算,用基底表示向量,屬于基礎(chǔ)題.4、C【解析】

由條件可看出,則為異面直線(xiàn)與所成的角,可證得三角形中,,解得從而得出異面直線(xiàn)與所成的角.【詳解】連接,,如圖:又,則為異面直線(xiàn)與所成的角.因?yàn)榍胰庵鶠橹比庵?,∴∴面,∴,又,,∴,∴,解?故選C【點(diǎn)睛】考查直三棱柱的定義,線(xiàn)面垂直的性質(zhì),考查了異面直線(xiàn)所成角的概念及求法,考查了邏輯推理能力,屬于基礎(chǔ)題.5、D【解析】

根據(jù)約束條件作出可行域,化目標(biāo)函數(shù)為直線(xiàn)方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點(diǎn),由得,平移直線(xiàn),當(dāng)該直線(xiàn)經(jīng)過(guò)可行域的頂點(diǎn)時(shí),該直線(xiàn)在軸上的截距最小,此時(shí)取最小值,即.故選:D.【點(diǎn)睛】本題考查簡(jiǎn)單的線(xiàn)性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.6、D【解析】

根據(jù)等差數(shù)列公式直接計(jì)算得到答案.【詳解】依題意,,故,故,故,故選:D.【點(diǎn)睛】本題考查了等差數(shù)列的計(jì)算,意在考查學(xué)生的計(jì)算能力.7、D【解析】

可設(shè)的內(nèi)切圓的圓心為,設(shè),,可得,由切線(xiàn)的性質(zhì):切線(xiàn)長(zhǎng)相等推得,解得、,并設(shè),求得的值,推得為等邊三角形,由焦距為三角形的高,結(jié)合離心率公式可得所求值.【詳解】可設(shè)的內(nèi)切圓的圓心為,為切點(diǎn),且為中點(diǎn),,設(shè),,則,且有,解得,,設(shè),,設(shè)圓切于點(diǎn),則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點(diǎn)睛】本題考查橢圓的定義和性質(zhì),注意運(yùn)用三角形的內(nèi)心性質(zhì)和等邊三角形的性質(zhì),切線(xiàn)的性質(zhì),考查化簡(jiǎn)運(yùn)算能力,屬于中檔題.8、A【解析】

每個(gè)縣區(qū)至少派一位專(zhuān)家,基本事件總數(shù),甲,乙兩位專(zhuān)家派遣至同一縣區(qū)包含的基本事件個(gè)數(shù),由此能求出甲,乙兩位專(zhuān)家派遣至同一縣區(qū)的概率.【詳解】派四位專(zhuān)家對(duì)三個(gè)縣區(qū)進(jìn)行調(diào)研,每個(gè)縣區(qū)至少派一位專(zhuān)家基本事件總數(shù):甲,乙兩位專(zhuān)家派遣至同一縣區(qū)包含的基本事件個(gè)數(shù):甲,乙兩位專(zhuān)家派遣至同一縣區(qū)的概率為:本題正確選項(xiàng):【點(diǎn)睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.9、A【解析】

由已知先確定出雙曲線(xiàn)方程為,再分別找到為直角三角形的兩種情況,最后再結(jié)合即可解決.【詳解】由已知可得,,所以,從而雙曲線(xiàn)方程為,不妨設(shè)點(diǎn)在雙曲線(xiàn)右支上運(yùn)動(dòng),則,當(dāng)時(shí),此時(shí),所以,,所以;當(dāng)軸時(shí),,所以,又為銳角三角形,所以.故選:A.【點(diǎn)睛】本題考查雙曲線(xiàn)的性質(zhì)及其應(yīng)用,本題的關(guān)鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.10、C【解析】

采用逐一驗(yàn)證法,根據(jù)線(xiàn)線(xiàn)、線(xiàn)面之間的關(guān)系以及四面體的體積公式,可得結(jié)果.【詳解】A錯(cuò)誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯(cuò)誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點(diǎn)到平面的距離,由//,平面,平面所以//平面,則點(diǎn)到平面的距離即點(diǎn)到平面的距離,所以為定值,故四面體EMAC的體積為定值錯(cuò)誤由//,平面,平面所以//平面,則點(diǎn)到平面的距離即為點(diǎn)到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點(diǎn)睛】本題考查線(xiàn)面、線(xiàn)線(xiàn)之間的關(guān)系,考驗(yàn)分析能力以及邏輯推理能力,熟練線(xiàn)面垂直與平行的判定定理以及性質(zhì)定理,中檔題.11、C【解析】

由,可得,化簡(jiǎn)利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點(diǎn)睛】本題考查了向量共線(xiàn)定理、余弦定理、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.12、A【解析】

設(shè),用表示出,求出的值即可得出答案.【詳解】設(shè)由,,.故選:A【點(diǎn)睛】本題考查了向量加法、減法以及數(shù)乘運(yùn)算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】

畫(huà)出不等式組表示的平面區(qū)域,數(shù)形結(jié)合,即可容易求得目標(biāo)函數(shù)的最大值.【詳解】作出不等式組所表示的平面區(qū)域,如下圖陰影部分所示.觀(guān)察可知,當(dāng)直線(xiàn)過(guò)點(diǎn)時(shí),有最大值,.故答案為:.【點(diǎn)睛】本題考查二次不等式組與平面區(qū)域、線(xiàn)性規(guī)劃,主要考查推理論證能力以及數(shù)形結(jié)合思想,屬基礎(chǔ)題.14、1【解析】

本題先根據(jù)公式初步找到數(shù)列的通項(xiàng)公式,然后根據(jù)等差中項(xiàng)的性質(zhì)可解得的值,即可確定數(shù)列的通項(xiàng)公式,代入數(shù)列的表達(dá)式計(jì)算出數(shù)列的通項(xiàng)公式,然后運(yùn)用裂項(xiàng)相消法計(jì)算出前項(xiàng)和,再代入不等式進(jìn)行計(jì)算可得最小正整數(shù)的值.【詳解】由題意,當(dāng)時(shí),.當(dāng)時(shí),.則,.,,成等差數(shù)列,,即,解得..,...,.即,,即,,,,即.滿(mǎn)足的最小正整數(shù)的值為1.故答案為:1.【點(diǎn)睛】本題主要考查數(shù)列求通項(xiàng)公式、裂項(xiàng)相消法求前項(xiàng)和,考查了轉(zhuǎn)化思想、方程思想,考查了不等式的計(jì)算、邏輯思維能力和數(shù)學(xué)運(yùn)算能力.15、-2【解析】

可行域是如圖的菱形ABCD,代入計(jì)算,知為最小.16、【解析】

根據(jù)題意求出點(diǎn)N的坐標(biāo),將其代入橢圓的方程,求出參數(shù)m的值,再根據(jù)離心率的定義求值.【詳解】由題意得,將其代入橢圓方程得,所以.故答案為:.【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì),屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)x=1(2)證明見(jiàn)解析(3)【解析】

(1)令,根據(jù)導(dǎo)函數(shù)確定函數(shù)的單調(diào)區(qū)間,求出極小值,進(jìn)而求解;(2)轉(zhuǎn)化思想,要證,即證,即證,構(gòu)造函數(shù)進(jìn)而求證;(3)不等式對(duì)一切正實(shí)數(shù)恒成立,,設(shè),分類(lèi)討論進(jìn)而求解.【詳解】解:(1)令,所以,當(dāng)時(shí),,在上單調(diào)遞增;當(dāng)時(shí),,在單調(diào)遞減;所以,所以的零點(diǎn)為.(2)由題意,,要證,即證,即證,令,則,由(1)知,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,即,所以原不等式成立.(3)不等式對(duì)一切正實(shí)數(shù)恒成立,,設(shè),,記,△,①當(dāng)△時(shí),即時(shí),恒成立,故單調(diào)遞增.于是當(dāng)時(shí),,又,故,當(dāng)時(shí),,又,故,又當(dāng)時(shí),,因此,當(dāng)時(shí),,②當(dāng)△,即時(shí),設(shè)的兩個(gè)不等實(shí)根分別為,,又,于是,故當(dāng)時(shí),,從而在單調(diào)遞減;當(dāng)時(shí),,此時(shí),于是,即舍去,綜上,的取值范圍是.【點(diǎn)睛】(1)考查函數(shù)求導(dǎo),根據(jù)導(dǎo)函數(shù)確定函數(shù)的單調(diào)性,零點(diǎn);(2)考查轉(zhuǎn)化思想,構(gòu)造函數(shù)求極值;(3)考查分類(lèi)討論思想,函數(shù)的單調(diào)性,函數(shù)的求導(dǎo);屬于難題.18、(1);(2)證明見(jiàn)解析.【解析】

(1)分、、三種情況解不等式,即可得出該不等式的解集;(2)利用分析法可知,要證,即證,只需證明即可,因式分解后,判斷差值符號(hào)即可,由此證明出所證不等式成立.【詳解】(1).當(dāng)時(shí),由,解得,此時(shí);當(dāng)時(shí),不成立;當(dāng)時(shí),由,解得,此時(shí).綜上所述,不等式的解集為;(2)要證,即證,因?yàn)?,,所以,,?所以,.故所證不等式成立.【點(diǎn)睛】本題考查絕對(duì)值不等式的求解,同時(shí)也考查了利用分析法和作差法證明不等式,考查分類(lèi)討論思想以及推理能力,屬于中等題.19、(Ⅰ);(Ⅱ)面積的最小值為9,.【解析】

(Ⅰ)由已知求出拋物線(xiàn)的焦點(diǎn)坐標(biāo)即得橢圓中的,再由離心率可求得,從而得值,得標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線(xiàn)方程為,設(shè),把直線(xiàn)方程代入拋物線(xiàn)方程,化為的一元二次方程,由韋達(dá)定理得,由弦長(zhǎng)公式得,同理求得點(diǎn)的橫坐標(biāo),于是可得,將面積表示為參數(shù)的函數(shù),利用導(dǎo)數(shù)可求得最大值.【詳解】(Ⅰ)∵橢圓:,長(zhǎng)軸的右端點(diǎn)與拋物線(xiàn):的焦點(diǎn)重合,∴,又∵橢圓的離心率是,∴,,∴橢圓的標(biāo)準(zhǔn)方程為.(Ⅱ)過(guò)點(diǎn)的直線(xiàn)的方程設(shè)為,設(shè),,聯(lián)立得,∴,,∴.過(guò)且與直線(xiàn)垂直的直線(xiàn)設(shè)為,聯(lián)立得,∴,故,∴,面積.令,則,,令,則,即時(shí),面積最小,即當(dāng)時(shí),面積的最小值為9,此時(shí)直線(xiàn)的方程為.【點(diǎn)睛】本題考查橢圓方程的求解,拋物線(xiàn)中弦長(zhǎng)的求解,涉及三角形面積范圍問(wèn)題,利用導(dǎo)數(shù)求函數(shù)的最值問(wèn)題,屬綜合困難題.20、(1),;(2).【解析】

(1)在直線(xiàn)的參數(shù)方程中消去參數(shù)可得出直線(xiàn)的普通方程,在曲線(xiàn)的極坐標(biāo)方程兩邊同時(shí)乘以得,進(jìn)而可化簡(jiǎn)得出曲線(xiàn)的直角坐標(biāo)方程;(2)根據(jù)變換得出的普通方程為,可設(shè)點(diǎn)的坐標(biāo)為,利用點(diǎn)到直線(xiàn)的距離公式結(jié)合正弦函數(shù)的有界性可得出結(jié)果.【詳解】(1)由(為參數(shù)),得,化簡(jiǎn)得,故直線(xiàn)的普通方程為.由,得,又,,.所以的直角坐標(biāo)方程為;(2)由(1)得曲線(xiàn)的直角坐標(biāo)方程為,向下平移個(gè)單位得到,縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的倍得到曲線(xiàn)的方程為,所以曲線(xiàn)的參數(shù)方程為(為參數(shù)).故點(diǎn)到直線(xiàn)的距離為,當(dāng)時(shí),最小為.【點(diǎn)睛】本題考查曲線(xiàn)的參數(shù)方程、極坐標(biāo)方程與普通方程的相互轉(zhuǎn)化,同時(shí)也考查了利用橢圓的參數(shù)方程解決點(diǎn)到直線(xiàn)的距離最值的求解,考查計(jì)算能力,屬于中等題.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論