凱里學(xué)院《大數(shù)據(jù)與深度學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
凱里學(xué)院《大數(shù)據(jù)與深度學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
凱里學(xué)院《大數(shù)據(jù)與深度學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
凱里學(xué)院《大數(shù)據(jù)與深度學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
凱里學(xué)院《大數(shù)據(jù)與深度學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)凱里學(xué)院

《大數(shù)據(jù)與深度學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在構(gòu)建大數(shù)據(jù)處理系統(tǒng)時(shí),需要考慮數(shù)據(jù)的采集、存儲(chǔ)、處理和分析等多個(gè)環(huán)節(jié)。假設(shè)一個(gè)企業(yè)需要從多個(gè)來(lái)源(如網(wǎng)站、移動(dòng)應(yīng)用、傳感器等)收集數(shù)據(jù),并將其整合到一個(gè)統(tǒng)一的數(shù)據(jù)倉(cāng)庫(kù)中。以下哪種工具或技術(shù)通常用于數(shù)據(jù)的采集和整合?()A.FlumeB.KafkaC.SqoopD.Alloftheabove(以上皆是)2、在大數(shù)據(jù)的處理中,數(shù)據(jù)融合是將多個(gè)數(shù)據(jù)源的數(shù)據(jù)整合在一起的過(guò)程。假設(shè)要將來(lái)自不同傳感器的環(huán)境監(jiān)測(cè)數(shù)據(jù)進(jìn)行融合,以獲得更全面和準(zhǔn)確的環(huán)境狀況評(píng)估。以下哪種數(shù)據(jù)融合方法最適合這種情況?()A.基于特征的融合B.基于決策的融合C.基于模型的融合D.以上方法結(jié)合使用3、在大數(shù)據(jù)存儲(chǔ)和處理中,分布式系統(tǒng)的一致性模型起著重要作用。以下關(guān)于一致性模型的描述,哪一項(xiàng)是錯(cuò)誤的?()A.強(qiáng)一致性要求所有節(jié)點(diǎn)在任何時(shí)刻看到的數(shù)據(jù)都是完全一致的B.弱一致性允許在一定時(shí)間內(nèi)數(shù)據(jù)在不同節(jié)點(diǎn)上存在差異,但最終會(huì)達(dá)到一致C.最終一致性是指經(jīng)過(guò)一段時(shí)間的同步后,數(shù)據(jù)能夠達(dá)到一致?tīng)顟B(tài)D.一致性模型對(duì)系統(tǒng)性能沒(méi)有影響,因此在設(shè)計(jì)系統(tǒng)時(shí)可以隨意選擇4、在構(gòu)建大數(shù)據(jù)處理架構(gòu)時(shí),需要考慮計(jì)算資源的分配和管理。以下哪種技術(shù)可以實(shí)現(xiàn)資源的動(dòng)態(tài)分配和優(yōu)化?()A.虛擬化技術(shù)B.容器技術(shù)C.云計(jì)算平臺(tái)D.以上都是5、大數(shù)據(jù)在交通領(lǐng)域有廣泛的應(yīng)用,以下關(guān)于大數(shù)據(jù)在交通領(lǐng)域的應(yīng)用描述中,錯(cuò)誤的是()。A.大數(shù)據(jù)可以用于交通流量監(jiān)測(cè)和預(yù)測(cè),提高交通管理的效率和準(zhǔn)確性B.大數(shù)據(jù)可以用于智能交通系統(tǒng)的建設(shè)和優(yōu)化,提高交通運(yùn)輸?shù)陌踩院捅憬菪訡.大數(shù)據(jù)可以用于交通規(guī)劃和決策支持,提高城市交通的可持續(xù)性和發(fā)展水平D.大數(shù)據(jù)在交通領(lǐng)域的應(yīng)用只局限于城市交通,不能應(yīng)用于高速公路和鐵路等交通領(lǐng)域6、在大數(shù)據(jù)項(xiàng)目實(shí)施過(guò)程中,數(shù)據(jù)質(zhì)量是一個(gè)關(guān)鍵問(wèn)題。假設(shè)一個(gè)數(shù)據(jù)集存在大量的缺失值、錯(cuò)誤值和重復(fù)數(shù)據(jù)。以下哪種方法可以有效地提高數(shù)據(jù)質(zhì)量?()A.數(shù)據(jù)清洗和預(yù)處理B.數(shù)據(jù)壓縮C.數(shù)據(jù)加密D.數(shù)據(jù)備份7、在大數(shù)據(jù)分析中,建立數(shù)據(jù)倉(cāng)庫(kù)是常見(jiàn)的做法。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)的描述,不準(zhǔn)確的是()A.數(shù)據(jù)倉(cāng)庫(kù)存儲(chǔ)的是經(jīng)過(guò)整合和清洗的數(shù)據(jù)B.數(shù)據(jù)倉(cāng)庫(kù)主要用于支持決策分析,而不是事務(wù)處理C.數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)是實(shí)時(shí)更新的,反映最新的業(yè)務(wù)狀態(tài)D.數(shù)據(jù)倉(cāng)庫(kù)的設(shè)計(jì)需要考慮數(shù)據(jù)的分層和主題域的劃分8、在大數(shù)據(jù)的存儲(chǔ)中,為了提高數(shù)據(jù)的可靠性和可用性,常常采用冗余存儲(chǔ)的方式。假設(shè)一個(gè)關(guān)鍵的大數(shù)據(jù)集需要確保在硬件故障時(shí)數(shù)據(jù)不丟失。以下哪種冗余存儲(chǔ)策略最適合這種需求?()A.鏡像存儲(chǔ)B.奇偶校驗(yàn)存儲(chǔ)C.糾錯(cuò)編碼存儲(chǔ)D.以上策略結(jié)合使用9、假設(shè)要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行數(shù)據(jù)降維,以減少數(shù)據(jù)量和計(jì)算復(fù)雜度,以下哪種技術(shù)較為合適?()A.特征選擇B.特征提取C.數(shù)據(jù)壓縮D.數(shù)據(jù)清洗10、在大數(shù)據(jù)項(xiàng)目的實(shí)施過(guò)程中,項(xiàng)目管理至關(guān)重要。以下哪個(gè)階段在項(xiàng)目管理中最為關(guān)鍵?()A.需求分析B.設(shè)計(jì)開(kāi)發(fā)C.測(cè)試上線D.運(yùn)維監(jiān)控11、在大數(shù)據(jù)處理中,數(shù)據(jù)清洗是一個(gè)重要的環(huán)節(jié)。假設(shè)我們有一個(gè)包含大量用戶購(gòu)買記錄的數(shù)據(jù)集,其中存在部分?jǐn)?shù)據(jù)缺失、錯(cuò)誤或重復(fù)。以下哪種方法不太適合用于處理數(shù)據(jù)缺失的情況?()A.使用均值或中位數(shù)填充缺失值B.根據(jù)其他相關(guān)字段的值通過(guò)算法推測(cè)缺失值C.直接刪除包含缺失值的數(shù)據(jù)行D.不做任何處理,保留缺失值12、當(dāng)處理大數(shù)據(jù)中的關(guān)系型數(shù)據(jù)時(shí),需要選擇合適的數(shù)據(jù)庫(kù)管理系統(tǒng)。假設(shè)一個(gè)大型企業(yè)的人力資源系統(tǒng),存儲(chǔ)了員工的各種信息和關(guān)系。以下哪種數(shù)據(jù)庫(kù)最適合處理這種復(fù)雜的關(guān)系型數(shù)據(jù)?()A.PostgreSQLB.MySQLC.OracleD.SQLServer13、在大數(shù)據(jù)分析中,以下哪種可視化工具常用于展示數(shù)據(jù)的分布和趨勢(shì)?()A.柱狀圖B.餅圖C.折線圖D.雷達(dá)圖14、假設(shè)一個(gè)社交媒體平臺(tái)擁有數(shù)十億用戶,每天產(chǎn)生海量的文本數(shù)據(jù),包括帖子、評(píng)論、私信等。為了對(duì)這些文本數(shù)據(jù)進(jìn)行情感分析,判斷用戶的態(tài)度是積極、消極還是中性,以下哪種方法通常不是首選?()A.基于詞典的方法B.機(jī)器學(xué)習(xí)中的支持向量機(jī)算法C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)D.人工逐一閱讀和判斷15、在大數(shù)據(jù)項(xiàng)目的規(guī)劃階段,需要明確項(xiàng)目的目標(biāo)和需求。假設(shè)一個(gè)金融機(jī)構(gòu)計(jì)劃開(kāi)展大數(shù)據(jù)項(xiàng)目以降低風(fēng)險(xiǎn)。以下哪個(gè)步驟是首先要進(jìn)行的?()A.確定所需的數(shù)據(jù)類型和來(lái)源B.評(píng)估現(xiàn)有技術(shù)架構(gòu)是否支持大數(shù)據(jù)處理C.分析潛在的風(fēng)險(xiǎn)場(chǎng)景和業(yè)務(wù)需求D.制定項(xiàng)目的預(yù)算和時(shí)間表16、在大數(shù)據(jù)的關(guān)聯(lián)規(guī)則挖掘中,Apriori算法是一種經(jīng)典的算法。假設(shè)我們有一個(gè)超市銷售數(shù)據(jù)集,需要挖掘商品之間的關(guān)聯(lián)規(guī)則。以下關(guān)于Apriori算法的特點(diǎn),哪一項(xiàng)是不正確的?()A.基于頻繁項(xiàng)集的先驗(yàn)知識(shí)進(jìn)行挖掘B.計(jì)算復(fù)雜度較高,不適用于大規(guī)模數(shù)據(jù)集C.能夠發(fā)現(xiàn)強(qiáng)關(guān)聯(lián)規(guī)則,但可能會(huì)忽略一些弱關(guān)聯(lián)規(guī)則D.對(duì)數(shù)據(jù)的噪聲和缺失值不敏感17、在大數(shù)據(jù)存儲(chǔ)中,NoSQL數(shù)據(jù)庫(kù)具有很多特點(diǎn)。假設(shè)一個(gè)應(yīng)用場(chǎng)景需要快速存儲(chǔ)和檢索大量的非結(jié)構(gòu)化數(shù)據(jù),并且對(duì)數(shù)據(jù)的一致性要求不高。以下哪種NoSQL數(shù)據(jù)庫(kù)可能是最佳選擇?()A.Redis(內(nèi)存數(shù)據(jù)庫(kù))B.Cassandra(分布式寬列存儲(chǔ)數(shù)據(jù)庫(kù))C.MongoDB(文檔數(shù)據(jù)庫(kù))D.Alloftheabove(以上皆是)18、當(dāng)處理大規(guī)模的文本數(shù)據(jù)時(shí),常常需要進(jìn)行詞干提取和詞形還原操作。假設(shè)我們有一個(gè)文本數(shù)據(jù)集,包含了各種不同形式的單詞。以下關(guān)于詞干提取和詞形還原的說(shuō)法,哪一項(xiàng)是正確的?()A.詞干提取和詞形還原的結(jié)果總是相同的,只是方法略有不同B.詞干提取只是簡(jiǎn)單地去除單詞的后綴,可能會(huì)得到不是完整單詞的結(jié)果;詞形還原會(huì)根據(jù)單詞的語(yǔ)法規(guī)則得到其基本形式C.詞形還原比詞干提取更復(fù)雜,所以在處理大數(shù)據(jù)時(shí)通常只使用詞干提取D.對(duì)于大數(shù)據(jù)處理,詞干提取和詞形還原都不是必要的操作19、大數(shù)據(jù)在電商領(lǐng)域有廣泛的應(yīng)用,以下關(guān)于大數(shù)據(jù)在電商領(lǐng)域的應(yīng)用描述中,錯(cuò)誤的是()。A.大數(shù)據(jù)可以用于用戶行為分析和個(gè)性化推薦,提高用戶體驗(yàn)和轉(zhuǎn)化率B.大數(shù)據(jù)可以用于商品庫(kù)存管理和供應(yīng)鏈優(yōu)化,降低成本和提高效率C.大數(shù)據(jù)可以用于電商平臺(tái)的營(yíng)銷和推廣,提高品牌知名度和市場(chǎng)份額D.大數(shù)據(jù)在電商領(lǐng)域的應(yīng)用只局限于大型電商平臺(tái),不適用于中小電商企業(yè)20、大數(shù)據(jù)的處理常常需要處理非結(jié)構(gòu)化數(shù)據(jù),例如文本、圖像、音頻等。假設(shè)要對(duì)大量的文本評(píng)論進(jìn)行情感分析。以下哪種技術(shù)最適合這種非結(jié)構(gòu)化數(shù)據(jù)的處理任務(wù)?()A.自然語(yǔ)言處理B.計(jì)算機(jī)視覺(jué)C.語(yǔ)音識(shí)別D.以上技術(shù)都不適合21、在大數(shù)據(jù)存儲(chǔ)中,為了提高數(shù)據(jù)的可靠性和容錯(cuò)性,常常采用冗余存儲(chǔ)。假設(shè)有一個(gè)數(shù)據(jù)塊,系統(tǒng)設(shè)置了多個(gè)副本,當(dāng)其中一個(gè)副本損壞時(shí),以下哪種恢復(fù)方式最快速?()A.從其他副本中直接復(fù)制B.重新計(jì)算損壞的數(shù)據(jù)C.等待副本自動(dòng)修復(fù)D.以上方式恢復(fù)速度相同22、在大數(shù)據(jù)時(shí)代,數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)集市的概念仍然重要。假設(shè)一個(gè)企業(yè)需要為不同部門提供數(shù)據(jù)分析支持。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)集市的選擇,正確的是:()A.建立一個(gè)大型的數(shù)據(jù)倉(cāng)庫(kù),所有部門共享使用B.為每個(gè)部門分別建立數(shù)據(jù)集市,滿足個(gè)性化需求C.先建立數(shù)據(jù)倉(cāng)庫(kù),再根據(jù)部門需求從倉(cāng)庫(kù)中抽取數(shù)據(jù)建立數(shù)據(jù)集市D.數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)集市都不適合大數(shù)據(jù)環(huán)境,應(yīng)采用新的技術(shù)架構(gòu)23、在大數(shù)據(jù)環(huán)境中,數(shù)據(jù)集成涉及多個(gè)數(shù)據(jù)源的整合。以下關(guān)于數(shù)據(jù)集成過(guò)程中可能遇到的問(wèn)題,哪一項(xiàng)描述不準(zhǔn)確?()A.數(shù)據(jù)源的數(shù)據(jù)格式不一致B.不同數(shù)據(jù)源的數(shù)據(jù)語(yǔ)義存在差異C.數(shù)據(jù)集成會(huì)導(dǎo)致數(shù)據(jù)量大幅減少D.數(shù)據(jù)的重復(fù)和沖突24、大數(shù)據(jù)的處理需要考慮數(shù)據(jù)的時(shí)效性和新鮮度。假設(shè)一個(gè)金融交易大數(shù)據(jù)系統(tǒng),需要實(shí)時(shí)反映市場(chǎng)的最新動(dòng)態(tài)。以下哪種技術(shù)或方法最能保證數(shù)據(jù)的及時(shí)性和準(zhǔn)確性?()A.實(shí)時(shí)數(shù)據(jù)采集和處理B.定期數(shù)據(jù)更新C.數(shù)據(jù)緩存和預(yù)加載D.以上方法結(jié)合使用25、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)隱私法規(guī)日益嚴(yán)格。假設(shè)一個(gè)公司在處理用戶數(shù)據(jù)時(shí),以下哪種做法符合合規(guī)要求?()A.在未獲得用戶明確同意的情況下,將用戶數(shù)據(jù)用于第三方營(yíng)銷B.對(duì)用戶數(shù)據(jù)進(jìn)行匿名化處理后,無(wú)需再遵循隱私法規(guī)C.建立完善的數(shù)據(jù)隱私管理制度,定期進(jìn)行合規(guī)審計(jì)D.只要數(shù)據(jù)不涉及敏感信息,就可以隨意使用26、假設(shè)要對(duì)大量的音頻數(shù)據(jù)進(jìn)行分析和處理,以下哪種技術(shù)或工具可能會(huì)被用到?()A.語(yǔ)音識(shí)別技術(shù)B.音頻處理庫(kù)C.深度學(xué)習(xí)框架D.以上都是27、在大數(shù)據(jù)時(shí)代,數(shù)據(jù)血緣關(guān)系的追蹤變得重要。假設(shè)我們有一個(gè)數(shù)據(jù)分析流程,以下關(guān)于數(shù)據(jù)血緣關(guān)系的描述,哪一項(xiàng)是不正確的?()A.數(shù)據(jù)血緣關(guān)系可以幫助理解數(shù)據(jù)的來(lái)源和流向B.數(shù)據(jù)血緣關(guān)系能夠快速定位數(shù)據(jù)處理過(guò)程中的錯(cuò)誤C.數(shù)據(jù)血緣關(guān)系只存在于數(shù)據(jù)倉(cāng)庫(kù)中,在其他數(shù)據(jù)存儲(chǔ)系統(tǒng)中不存在D.數(shù)據(jù)血緣關(guān)系有助于評(píng)估數(shù)據(jù)變更對(duì)整個(gè)系統(tǒng)的影響28、在大數(shù)據(jù)分析中,常常需要對(duì)時(shí)間序列數(shù)據(jù)進(jìn)行預(yù)測(cè)。假設(shè)有一個(gè)股票價(jià)格的時(shí)間序列數(shù)據(jù),以下哪種預(yù)測(cè)方法可能效果較好?()A.ARIMA模型B.決策樹(shù)C.樸素貝葉斯D.支持向量機(jī)29、在大數(shù)據(jù)安全方面,數(shù)據(jù)加密是一種重要的保護(hù)手段。以下關(guān)于對(duì)稱加密算法和非對(duì)稱加密算法的比較,哪一項(xiàng)是不正確的?()A.對(duì)稱加密算法的加密和解密速度通常比非對(duì)稱加密算法快B.非對(duì)稱加密算法的密鑰管理比對(duì)稱加密算法更簡(jiǎn)單C.對(duì)稱加密算法適用于大量數(shù)據(jù)的加密,非對(duì)稱加密算法適用于數(shù)字簽名等場(chǎng)景D.對(duì)稱加密算法的安全性比非對(duì)稱加密算法高30、當(dāng)處理大數(shù)據(jù)中的圖數(shù)據(jù)時(shí),例如社交網(wǎng)絡(luò)關(guān)系圖,需要特殊的算法和技術(shù)。假設(shè)要找出社交網(wǎng)絡(luò)中的關(guān)鍵節(jié)點(diǎn)或社區(qū)結(jié)構(gòu)。以下哪種算法最適合這個(gè)任務(wù)?()A.深度優(yōu)先搜索算法B.廣度優(yōu)先搜索算法C.PageRank算法D.最短路徑算法二、編程題(本大題共5個(gè)小題,共25分)1、(本題5分)使用Python的Hadoop框架,對(duì)一個(gè)包含城市交通擁堵指數(shù)數(shù)據(jù)的大數(shù)據(jù)集進(jìn)行分析。找出擁堵指數(shù)最高的10個(gè)路段,并計(jì)算這些路段的平均擁堵指數(shù)。2、(本題5分)給定一個(gè)包含社交媒體用戶發(fā)布圖片數(shù)據(jù)的數(shù)據(jù)集,使用圖像分析技術(shù)提取圖片的主題和情感傾向。3、(本題5分)使用Python的Pandas庫(kù),分析一個(gè)包含在線購(gòu)物平臺(tái)商品評(píng)價(jià)關(guān)鍵詞數(shù)據(jù)的大規(guī)模數(shù)據(jù)集。找出出現(xiàn)頻率最高的10個(gè)關(guān)鍵詞,并計(jì)算它們的總出現(xiàn)次數(shù)。4、(本題5分)基于HBase,設(shè)計(jì)并實(shí)現(xiàn)一個(gè)存儲(chǔ)和查詢海量地理位置數(shù)據(jù)(如經(jīng)緯度、地址)的系統(tǒng),支持附近地點(diǎn)的查詢功能。5、(本題5分)用Java實(shí)現(xiàn)一個(gè)程序,處理一個(gè)包含電商平臺(tái)商品退貨數(shù)據(jù)的大型數(shù)據(jù)集。找出退貨率最高的5種商品,并計(jì)算它們的平均退貨率。三、簡(jiǎn)答題

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論