版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省蚌埠市2025屆高考數(shù)學(xué)一模試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.閱讀名著,品味人生,是中華民族的優(yōu)良傳統(tǒng).學(xué)生李華計劃在高一年級每周星期一至星期五的每天閱讀半個小時中國四大名著:《紅樓夢》、《三國演義》、《水滸傳》及《西游記》,其中每天閱讀一種,每種至少閱讀一次,則每周不同的閱讀計劃共有()A.120種 B.240種 C.480種 D.600種2.若的展開式中的系數(shù)為-45,則實數(shù)的值為()A. B.2 C. D.3.中國古代數(shù)學(xué)名著《九章算術(shù)》中記載了公元前344年商鞅督造的一種標(biāo)準(zhǔn)量器——商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當(dāng)該量器口密閉時其表面積為42.2(平方寸),則圖中x的值為()A.3 B.3.4 C.3.8 D.44.復(fù)數(shù)().A. B. C. D.5.在中,角的對邊分別為,若,則的形狀為()A.直角三角形 B.等腰非等邊三角形C.等腰或直角三角形 D.鈍角三角形6.已知復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為,則下列結(jié)論正確的是()A. B.復(fù)數(shù)的共軛復(fù)數(shù)是C. D.7.已知正三棱錐的所有頂點(diǎn)都在球的球面上,其底面邊長為4,、、分別為側(cè)棱,,的中點(diǎn).若在三棱錐內(nèi),且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.8.已知集合,集合,若,則()A. B. C. D.9.已知函數(shù),,則的極大值點(diǎn)為()A. B. C. D.10.a(chǎn)為正實數(shù),i為虛數(shù)單位,,則a=()A.2 B. C. D.111.若,則的值為()A. B. C. D.12.集合的真子集的個數(shù)為()A.7 B.8 C.31 D.32二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,,則______.14.已知函數(shù),令,,若,表示不超過實數(shù)的最大整數(shù),記數(shù)列的前項和為,則_________15.利用等面積法可以推導(dǎo)出在邊長為a的正三角形內(nèi)任意一點(diǎn)到三邊的距離之和為定值,類比上述結(jié)論,利用等體積法進(jìn)行推導(dǎo),在棱長為a的正四面體內(nèi)任意一點(diǎn)到四個面的距離之和也為定值,則這個定值是______16.已知,則________.(填“>”或“=”或“<”).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)橢圓的左、右焦點(diǎn)分別為,橢圓上兩動點(diǎn)使得四邊形為平行四邊形,且平行四邊形的周長和最大面積分別為8和.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓的另一交點(diǎn)為,當(dāng)點(diǎn)在以線段為直徑的圓上時,求直線的方程.18.(12分)已知曲線的參數(shù)方程為為參數(shù),曲線的參數(shù)方程為為參數(shù)).(1)求與的普通方程;(2)若與相交于,兩點(diǎn),且,求的值.19.(12分)已知函數(shù)f(x)ax﹣lnx(a∈R).(1)若a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)g(x)=f(x)1,若函數(shù)g(x)在上有兩個零點(diǎn),求實數(shù)a的取值范圍.20.(12分)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,直線和直線的極坐標(biāo)方程分別是()和(),其中().(1)寫出曲線的直角坐標(biāo)方程;(2)設(shè)直線和直線分別與曲線交于除極點(diǎn)的另外點(diǎn),,求的面積最小值.21.(12分)選修4-4:坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,曲線:(為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn)、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長度的極坐標(biāo)系中,曲線:.(1)求曲線的普通方程以及曲線的平面直角坐標(biāo)方程;(2)若曲線上恰好存在三個不同的點(diǎn)到曲線的距離相等,求這三個點(diǎn)的極坐標(biāo).22.(10分)選修4-5:不等式選講已知函數(shù)(Ⅰ)解不等式;(Ⅱ)對及,不等式恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
首先將五天進(jìn)行分組,再對名著進(jìn)行分配,根據(jù)分步乘法計數(shù)原理求得結(jié)果.【詳解】將周一至周五分為組,每組至少天,共有:種分組方法;將四大名著安排到組中,每組種名著,共有:種分配方法;由分步乘法計數(shù)原理可得不同的閱讀計劃共有:種本題正確選項:【點(diǎn)睛】本題考查排列組合中的分組分配問題,涉及到分步乘法計數(shù)原理的應(yīng)用,易錯點(diǎn)是忽略分組中涉及到的平均分組問題.2、D【解析】
將多項式的乘法式展開,結(jié)合二項式定理展開式通項,即可求得的值.【詳解】∵所以展開式中的系數(shù)為,∴解得.故選:D.【點(diǎn)睛】本題考查了二項式定理展開式通項的簡單應(yīng)用,指定項系數(shù)的求法,屬于基礎(chǔ)題.3、D【解析】
根據(jù)三視圖即可求得幾何體表面積,即可解得未知數(shù).【詳解】由圖可知,該幾何體是由一個長寬高分別為和一個底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.【點(diǎn)睛】本題考查由三視圖還原幾何體,以及圓柱和長方體表面積的求解,屬綜合基礎(chǔ)題.4、A【解析】試題分析:,故選A.【考點(diǎn)】復(fù)數(shù)運(yùn)算【名師點(diǎn)睛】復(fù)數(shù)代數(shù)形式的四則運(yùn)算的法則是進(jìn)行復(fù)數(shù)運(yùn)算的理論依據(jù),加減運(yùn)算類似于多項式的合并同類項,乘法法則類似于多項式的乘法法則,除法運(yùn)算則先將除式寫成分式的形式,再將分母實數(shù)化.5、C【解析】
利用正弦定理將邊化角,再由,化簡可得,最后分類討論可得;【詳解】解:因為所以所以所以所以所以當(dāng)時,為直角三角形;當(dāng)時即,為等腰三角形;的形狀是等腰三角形或直角三角形故選:.【點(diǎn)睛】本題考查三角形形狀的判斷,考查正弦定理的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.6、D【解析】
首先求得,然后根據(jù)復(fù)數(shù)乘法運(yùn)算、共軛復(fù)數(shù)、復(fù)數(shù)的模、復(fù)數(shù)除法運(yùn)算對選項逐一分析,由此確定正確選項.【詳解】由題意知復(fù)數(shù),則,所以A選項不正確;復(fù)數(shù)的共軛復(fù)數(shù)是,所以B選項不正確;,所以C選項不正確;,所以D選項正確.故選:D【點(diǎn)睛】本小題考查復(fù)數(shù)的幾何意義,共軛復(fù)數(shù),復(fù)數(shù)的模,復(fù)數(shù)的乘法和除法運(yùn)算等基礎(chǔ)知識;考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想.7、D【解析】
如圖,平面截球所得截面的圖形為圓面,計算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點(diǎn)記為,連接、.依題意,所以,設(shè)球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點(diǎn)睛】本題考查了三棱錐的外接球問題,三棱錐體積,球體積,意在考查學(xué)生的計算能力和空間想象能力.8、A【解析】
根據(jù)或,驗證交集后求得的值.【詳解】因為,所以或.當(dāng)時,,不符合題意,當(dāng)時,.故選A.【點(diǎn)睛】本小題主要考查集合的交集概念及運(yùn)算,屬于基礎(chǔ)題.9、A【解析】
求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)數(shù)為零,根據(jù)函數(shù)單調(diào)性,求得極大值點(diǎn)即可.【詳解】因為,故可得,令,因為,故可得或,則在區(qū)間單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,故的極大值點(diǎn)為.故選:A.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的極值點(diǎn),屬基礎(chǔ)題.10、B【解析】
,選B.11、C【解析】
根據(jù),再根據(jù)二項式的通項公式進(jìn)行求解即可.【詳解】因為,所以二項式的展開式的通項公式為:,令,所以,因此有.故選:C【點(diǎn)睛】本題考查了二項式定理的應(yīng)用,考查了二項式展開式通項公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力12、A【解析】
計算,再計算真子集個數(shù)得到答案.【詳解】,故真子集個數(shù)為:.故選:.【點(diǎn)睛】本題考查了集合的真子集個數(shù),意在考查學(xué)生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由已知利用同角三角函數(shù)的基本關(guān)系式可求得,的值,由兩角差的正弦公式即可計算得的值.【詳解】,,,,,,,,.故答案為:【點(diǎn)睛】本題主要考查了同角三角函數(shù)的基本關(guān)系、兩角差的正弦公式,需熟記公式,屬于基礎(chǔ)題.14、4【解析】
根據(jù)導(dǎo)數(shù)的運(yùn)算,結(jié)合數(shù)列的通項公式的求法,求得,,,進(jìn)而得到,再利用放縮法和取整函數(shù)的定義,即可求解.【詳解】由題意,函數(shù),且,,可得,,又由,可得為常數(shù)列,且,數(shù)列表示首項為4,公差為2的等差數(shù)列,所以,其中數(shù)列滿足,所以,所以,又由,可得數(shù)列的前n項和為,數(shù)列的前n項和為,所以數(shù)列的前項和為,滿足,所以,即,又由表示不超過實數(shù)的最大整數(shù),所以.故答案為:4.【點(diǎn)睛】本題主要考查了函數(shù)的導(dǎo)數(shù)的計算,以及等差數(shù)列的通項公式,累加法求解數(shù)列的通項公式,以及裂項法求數(shù)列的和的綜合應(yīng)用,著重考查了分析問題和解答問題的能力,屬于中檔試題.15、【解析】
計算正四面體的高,并計算該正四面體的體積,利用等體積法,可得結(jié)果.【詳解】作平面,為的重心如圖則,所以設(shè)正四面體內(nèi)任意一點(diǎn)到四個面的距離之和為則故答案為:【點(diǎn)睛】本題考查類比推理的應(yīng)用,還考查等體積法,考驗理解能力以及計算能力,屬基礎(chǔ)題.16、【解析】
注意到,故只需比較與1的大小即可.【詳解】由已知,,故有.又由,故有.故答案為:.【點(diǎn)睛】本題考查對數(shù)式比較大小,涉及到換底公式的應(yīng)用,考查學(xué)生的數(shù)學(xué)運(yùn)算能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】
(1)根據(jù)題意計算得到,,得到橢圓方程.(2)設(shè),聯(lián)立方程得到,根據(jù),計算得到答案.【詳解】(1)由平行四邊形的周長為8,可知,即.由平行四邊形的最大面積為,可知,又,解得.所以橢圓方程為.(2)注意到直線的斜率不為0,且過定點(diǎn).設(shè),由消得,所以,因為,所以.因為點(diǎn)在以線段為直徑的圓上,所以,即,所以直線的方程或.【點(diǎn)睛】本題考查了橢圓方程,根據(jù)直線和橢圓的位置關(guān)系求直線,將題目轉(zhuǎn)化為是解題的關(guān)鍵.18、(1),(2)0【解析】
(1)分別把兩曲線參數(shù)方程中的參數(shù)消去,即可得到普通方程;(2)把直線的參數(shù)方程代入的普通方程,化為關(guān)于的一元二次方程,再由根與系數(shù)的關(guān)系及此時的幾何意義求解.【詳解】(1)由曲線的參數(shù)方程為為參數(shù)),消去參數(shù),可得;由曲線的參數(shù)方程為為參數(shù)),消去參數(shù),可得,即.(2)把為參數(shù))代入,得.,..解得:,即,滿足△..【點(diǎn)睛】本題考查參數(shù)方程化普通方程,特別是直線參數(shù)方程中參數(shù)的幾何意義的應(yīng)用,是中檔題.19、(1)單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,+∞)(2)(3,2e]【解析】
(1)當(dāng)a=2時,求出,求解,即可得出結(jié)論;(2)函數(shù)在上有兩個零點(diǎn)等價于a=2x在上有兩解,構(gòu)造函數(shù),,利用導(dǎo)數(shù),可分析求得實數(shù)a的取值范圍.【詳解】(1)當(dāng)a=2時,定義域為,則,令,解得x1,或x1(舍去),所以當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增;故函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,(2)設(shè),函數(shù)g(x)在上有兩個零點(diǎn)等價于在上有兩解令,,則,令,,顯然,在區(qū)間上單調(diào)遞增,又,所以當(dāng)時,有,即,當(dāng)時,有,即,所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,時,取得極小值,也是最小值,即,由方程在上有兩解及,可得實數(shù)a的取值范圍是.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、等價轉(zhuǎn)化思想以及數(shù)形結(jié)合思想,考查邏輯推理、數(shù)學(xué)計算能力,屬于中檔題.20、(1);(2)16.【解析】
(1)將極坐標(biāo)方程化為直角坐標(biāo)方程即可;(2)利用極徑的幾何意義,聯(lián)立曲線,直線,直線的極坐標(biāo)方程,得出,利用三角形面積公式,結(jié)合正弦函數(shù)的性質(zhì),得出的面積最小值.【詳解】(1)曲線:,即化為直角坐標(biāo)方程為:;(2),即同理∴當(dāng)且僅當(dāng),即()時取等號即的面積最小值為16【點(diǎn)睛】本題主要考查了極坐標(biāo)方程化直角坐標(biāo)方程以及極坐標(biāo)的應(yīng)用,屬于中檔題.21、(1),;(2),,.【解析】
(1)把曲線的參數(shù)方程與曲線的極坐標(biāo)方程分別轉(zhuǎn)化為直角坐標(biāo)方程;(2)利用圖象求出三個點(diǎn)的極徑與極角.【詳解】解:(1)由消去參數(shù)得,即曲線的普通方程為,又由得即為,即曲線的平面直角坐標(biāo)方程為(2)∵圓心到曲線:的距離,如圖所示,所以直線與圓的切點(diǎn)以及直線與圓的兩個交點(diǎn),即為所求.∵,則,直線的傾斜角為,即點(diǎn)的極角為,所以點(diǎn)的極角為,點(diǎn)的極角為,所以三個點(diǎn)的極坐標(biāo)為,,.【點(diǎn)睛】本題考查圓的參數(shù)方程和普通方程的轉(zhuǎn)化、直線極坐標(biāo)方程和直角坐標(biāo)方程的轉(zhuǎn)化,消去參數(shù)方程中的參數(shù),就可把參數(shù)方程化為普通方程,消去參數(shù)的常用方法有:①代入消元法;②加減消元法;③乘除消元法;④三角恒等式消元法,極坐標(biāo)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑工程共同償還承諾書
- 體育場館入駐辦法
- 倒班工作安全管理
- 醫(yī)療器械維護(hù)基礎(chǔ)設(shè)施施工合同
- 印刷企業(yè)平面設(shè)計師招聘合同
- 造紙企業(yè)消防設(shè)施改造施工協(xié)議
- 市場營銷班主任合同協(xié)議
- 食品冷鏈貨車司機(jī)招聘合同
- 地震監(jiān)測新司機(jī)招聘模板
- 金融服務(wù)平臺審計要領(lǐng)
- 矯直機(jī)市場洞察報告
- 課文挖空(Unit47)人教版英語七年級上冊
- 全冊知識點(diǎn)梳理-2024-2025學(xué)年統(tǒng)編版道德與法治七年級上冊
- 煙草公司化肥采購項目-化肥投標(biāo)文件(技術(shù)方案)
- 2024年江蘇省泰州市泰興市中考一模語文試卷(含答案解析)
- 2024年國開電大 高級財務(wù)會計 形考任務(wù)4答案
- 【良品鋪子成本控制中存在的問題及優(yōu)化建議探析(定量論文)11000字】
- 2024油品供應(yīng)居間合同協(xié)議書
- 2024至2030年中國青年旅舍行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略研究報告
- 牙膏采購?fù)稑?biāo)合同范本
- 2023-2024學(xué)年深圳市福田區(qū)七年級上冊期末數(shù)學(xué)試卷
評論
0/150
提交評論