2025屆遼寧省阜新市新邱區(qū)阜新二中高考數(shù)學(xué)三模試卷含解析_第1頁(yè)
2025屆遼寧省阜新市新邱區(qū)阜新二中高考數(shù)學(xué)三模試卷含解析_第2頁(yè)
2025屆遼寧省阜新市新邱區(qū)阜新二中高考數(shù)學(xué)三模試卷含解析_第3頁(yè)
2025屆遼寧省阜新市新邱區(qū)阜新二中高考數(shù)學(xué)三模試卷含解析_第4頁(yè)
2025屆遼寧省阜新市新邱區(qū)阜新二中高考數(shù)學(xué)三模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆遼寧省阜新市新邱區(qū)阜新二中高考數(shù)學(xué)三模試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.的內(nèi)角的對(duì)邊分別為,若,則內(nèi)角()A. B. C. D.2.已知,,,則()A. B. C. D.3.已知雙曲線的左,右焦點(diǎn)分別為,O為坐標(biāo)原點(diǎn),P為雙曲線在第一象限上的點(diǎn),直線PO,分別交雙曲線C的左,右支于另一點(diǎn),且,則雙曲線的離心率為()A. B.3 C.2 D.4.若點(diǎn)是角的終邊上一點(diǎn),則()A. B. C. D.5.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點(diǎn)移動(dòng)至點(diǎn),且,則三棱錐的外接球的表面積為()A. B. C. D.6.已知直線與圓有公共點(diǎn),則的最大值為()A.4 B. C. D.7.如圖,四邊形為平行四邊形,為中點(diǎn),為的三等分點(diǎn)(靠近)若,則的值為()A. B. C. D.8.已知命題:是“直線和直線互相垂直”的充要條件;命題:函數(shù)的最小值為4.給出下列命題:①;②;③;④,其中真命題的個(gè)數(shù)為()A.1 B.2 C.3 D.49.集合,,則()A. B. C. D.10.下列函數(shù)中既關(guān)于直線對(duì)稱(chēng),又在區(qū)間上為增函數(shù)的是()A.. B.C. D.11.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點(diǎn),點(diǎn)P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或512.在中,在邊上滿足,為的中點(diǎn),則().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,若,則的最小值為_(kāi)_______.14.已知函數(shù)是定義在上的奇函數(shù),且周期為,當(dāng)時(shí),,則的值為_(kāi)__________________.15.在直角坐標(biāo)系中,某等腰直角三角形的兩個(gè)頂點(diǎn)坐標(biāo)分別為,函數(shù)的圖象經(jīng)過(guò)該三角形的三個(gè)頂點(diǎn),則的解析式為_(kāi)__________.16.如圖,在梯形中,∥,分別是的中點(diǎn),若,則的值為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大?。唬?)在棱上確定一點(diǎn),使二面角的平面角的余弦值為.18.(12分)已知函數(shù)的定義域?yàn)?,且滿足,當(dāng)時(shí),有,且.(1)求不等式的解集;(2)對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.19.(12分)如圖1,與是處在同-個(gè)平面內(nèi)的兩個(gè)全等的直角三角形,,,連接是邊上一點(diǎn),過(guò)作,交于點(diǎn),沿將向上翻折,得到如圖2所示的六面體(1)求證:(2)設(shè)若平面底面,若平面與平面所成角的余弦值為,求的值;(3)若平面底面,求六面體的體積的最大值.20.(12分)如圖,在三棱錐中,,是的中點(diǎn),點(diǎn)在上,平面,平面平面,為銳角三角形,求證:(1)是的中點(diǎn);(2)平面平面.21.(12分)已知數(shù)列,其前項(xiàng)和為,若對(duì)于任意,,且,都有.(1)求證:數(shù)列是等差數(shù)列(2)若數(shù)列滿足,且等差數(shù)列的公差為,存在正整數(shù),使得,求的最小值.22.(10分)在國(guó)家“大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對(duì)某種產(chǎn)品的研發(fā)投入.為了對(duì)新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格試銷(xiāo),得到一組檢測(cè)數(shù)據(jù)如表所示:試銷(xiāo)價(jià)格(元)產(chǎn)品銷(xiāo)量(件)已知變量且有線性負(fù)相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學(xué)通過(guò)計(jì)算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的.(1)試判斷誰(shuí)的計(jì)算結(jié)果正確?(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢測(cè)數(shù)據(jù)的誤差不超過(guò),則稱(chēng)該檢測(cè)數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測(cè)數(shù)據(jù)中隨機(jī)抽取個(gè),求“理想數(shù)據(jù)”的個(gè)數(shù)的分布列和數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

由正弦定理化邊為角,由三角函數(shù)恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【點(diǎn)睛】本題考查正弦定理,考查兩角和的正弦公式和誘導(dǎo)公式,掌握正弦定理的邊角互化是解題關(guān)鍵.2、B【解析】

利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性,將數(shù)據(jù)和做對(duì)比,即可判斷.【詳解】由于,,故.故選:B.【點(diǎn)睛】本題考查利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較大小,屬基礎(chǔ)題.3、D【解析】

本道題結(jié)合雙曲線的性質(zhì)以及余弦定理,建立關(guān)于a與c的等式,計(jì)算離心率,即可.【詳解】結(jié)合題意,繪圖,結(jié)合雙曲線性質(zhì)可以得到PO=MO,而,結(jié)合四邊形對(duì)角線平分,可得四邊形為平行四邊形,結(jié)合,故對(duì)三角形運(yùn)用余弦定理,得到,而結(jié)合,可得,,代入上式子中,得到,結(jié)合離心率滿足,即可得出,故選D.【點(diǎn)睛】本道題考查了余弦定理以及雙曲線的性質(zhì),難度偏難.4、A【解析】

根據(jù)三角函數(shù)的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點(diǎn)是角的終邊上一點(diǎn),根據(jù)三角函數(shù)的定義,可得,則,故選A.【點(diǎn)睛】本題主要考查了三角函數(shù)的定義和正弦的倍角公式的化簡(jiǎn)、求值,其中解答中根據(jù)三角函數(shù)的定義和正弦的倍角公式,準(zhǔn)確化簡(jiǎn)、計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.5、A【解析】

將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,在中,計(jì)算半徑即可.【詳解】由,,可知平面.將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【點(diǎn)睛】本題考查了三棱錐外接球的表面積,考查了學(xué)生空間想象,邏輯推理,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于較難題.6、C【解析】

根據(jù)表示圓和直線與圓有公共點(diǎn),得到,再利用二次函數(shù)的性質(zhì)求解.【詳解】因?yàn)楸硎緢A,所以,解得,因?yàn)橹本€與圓有公共點(diǎn),所以圓心到直線的距離,即,解得,此時(shí),因?yàn)椋谶f增,所以的最大值.故選:C【點(diǎn)睛】本題主要考查圓的方程,直線與圓的位置關(guān)系以及二次函數(shù)的性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.7、D【解析】

使用不同方法用表示出,結(jié)合平面向量的基本定理列出方程解出.【詳解】解:,又解得,所以故選:D【點(diǎn)睛】本題考查了平面向量的基本定理及其意義,屬于基礎(chǔ)題.8、A【解析】

先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復(fù)合命題的真假,可得出選項(xiàng).【詳解】已知對(duì)于命題,由得,所以命題為假命題;關(guān)于命題,函數(shù),當(dāng)時(shí),,當(dāng)即時(shí),取等號(hào),當(dāng)時(shí),函數(shù)沒(méi)有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個(gè)數(shù)為1個(gè).故選:A.【點(diǎn)睛】本題考查直線的垂直的判定和基本不等式的應(yīng)用,以及復(fù)合命題的真假的判斷,注意運(yùn)用基本不等式時(shí),滿足所需的條件,屬于基礎(chǔ)題.9、A【解析】

計(jì)算,再計(jì)算交集得到答案.【詳解】,,故.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,屬于簡(jiǎn)單題.10、C【解析】

根據(jù)函數(shù)的對(duì)稱(chēng)性和單調(diào)性的特點(diǎn),利用排除法,即可得出答案.【詳解】A中,當(dāng)時(shí),,所以不關(guān)于直線對(duì)稱(chēng),則錯(cuò)誤;B中,,所以在區(qū)間上為減函數(shù),則錯(cuò)誤;D中,,而,則,所以不關(guān)于直線對(duì)稱(chēng),則錯(cuò)誤;故選:C.【點(diǎn)睛】本題考查函數(shù)基本性質(zhì),根據(jù)函數(shù)的解析式判斷函數(shù)的對(duì)稱(chēng)性和單調(diào)性,屬于基礎(chǔ)題.11、B【解析】

根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.【點(diǎn)睛】本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎(chǔ)題.12、B【解析】

由,可得,,再將代入即可.【詳解】因?yàn)?,所以,?故選:B.【點(diǎn)睛】本題考查平面向量的線性運(yùn)算性質(zhì)以及平面向量基本定理的應(yīng)用,是一道基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、40【解析】

設(shè)等比數(shù)列的公比為,根據(jù),可得,因?yàn)?,根?jù)均值不等式,即可求得答案.【詳解】設(shè)等比數(shù)列的公比為,,,等比數(shù)列的各項(xiàng)為正數(shù),,,當(dāng)且僅當(dāng),即時(shí),取得最小值.故答案為:.【點(diǎn)睛】本題主要考查了求數(shù)列值的最值問(wèn)題,解題關(guān)鍵是掌握等比數(shù)列通項(xiàng)公式和靈活使用均值不等式,考查了分析能力和計(jì)算能力,屬于中檔題.14、【解析】

由題意可得:,周期為,可得,可求出,最后再求的值即可.【詳解】解:函數(shù)是定義在上的奇函數(shù),.由周期為,可知,,..故答案為:.【點(diǎn)睛】本題主要考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.15、【解析】

結(jié)合題意先畫(huà)出直角坐標(biāo)系,點(diǎn)出所有可能組成等腰直角三角形的點(diǎn),采用排除法最終可確定為點(diǎn),再由函數(shù)性質(zhì)進(jìn)一步求解參數(shù)即可【詳解】等腰直角三角形的第三個(gè)頂點(diǎn)可能的位置如下圖中的點(diǎn),其中點(diǎn)與已有的兩個(gè)頂點(diǎn)橫坐標(biāo)重復(fù),舍去;若為點(diǎn)則點(diǎn)與點(diǎn)的中間位置的點(diǎn)的縱坐標(biāo)必然大于或小于,不可能為,因此點(diǎn)也舍去,只有點(diǎn)滿足題意.此時(shí)點(diǎn)為最大值點(diǎn),所以,又,則,所以點(diǎn),之間的圖像單調(diào),將,代入的表達(dá)式有由知,因此.故答案為:【點(diǎn)睛】本題考查由三角函數(shù)圖像求解解析式,數(shù)形結(jié)合思想,屬于中檔題16、【解析】

建系,設(shè)設(shè),由可得,進(jìn)一步得到的坐標(biāo),再利用數(shù)量積的坐標(biāo)運(yùn)算即可得到答案.【詳解】以A為坐標(biāo)原點(diǎn),AD為x軸建立如圖所示的直角坐標(biāo)系,設(shè),則,所以,,由,得,即,又,所以,故,,所以.故答案為:2【點(diǎn)睛】本題考查利用坐標(biāo)法求向量的數(shù)量積,考查學(xué)生的運(yùn)算求解能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】試題分析:(1)因?yàn)锳B⊥AC,A1B⊥平面ABC,所以以A為坐標(biāo)原點(diǎn),分別以AC、AB所在直線分別為x軸和y軸,以過(guò)A,且平行于BA1的直線為z軸建立空間直角坐標(biāo)系,由AB=AC=A1B=2求出所要用到的點(diǎn)的坐標(biāo),求出棱AA1與BC上的兩個(gè)向量,由向量的夾角求棱AA1與BC所成的角的大小;

(2)設(shè)棱B1C1上的一點(diǎn)P,由向量共線得到P點(diǎn)的坐標(biāo),然后求出兩個(gè)平面PAB與平面ABA1的一個(gè)法向量,把二面角P-AB-A1的平面角的余弦值為,轉(zhuǎn)化為它們法向量所成角的余弦值,由此確定出P點(diǎn)的坐標(biāo).試題解析:解(1)如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,則,.,故與棱所成的角是.(2)為棱中點(diǎn),設(shè),則.設(shè)平面的法向量為,,則,故而平面的法向量是,則,解得,即為棱中點(diǎn),其坐標(biāo)為.點(diǎn)睛:本題主要考查線面垂直的判定與性質(zhì),以及利用空間向量求二面角.空間向量解答立體幾何問(wèn)題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫(xiě)出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.18、(1);(2).【解析】

(1)利用定義法求出函數(shù)在上單調(diào)遞增,由和,求出,求出,運(yùn)用單調(diào)性求出不等式的解集;(2)由于恒成立,由(1)得出在上單調(diào)遞增,恒成立,設(shè),利用三角恒等變換化簡(jiǎn),結(jié)合恒成立的條件,構(gòu)造新函數(shù),利用單調(diào)性和最值,求出實(shí)數(shù)的取值范圍.【詳解】(1)設(shè),,所以函數(shù)在上單調(diào)遞增,又因?yàn)楹?,則,所以得解得,即,故的取值范圍為;(2)由于恒成立,恒成立,設(shè),則,令,則,所以在區(qū)間上單調(diào)遞增,所以,根據(jù)條件,只要,所以.【點(diǎn)睛】本題考查利用定義法求函數(shù)的單調(diào)性和利用單調(diào)性求不等式的解集,考查不等式恒成立問(wèn)題,還運(yùn)用降冪公式、兩角和與差的余弦公式、輔助角公式,考查轉(zhuǎn)化思想和解題能力.19、(1)證明見(jiàn)解析(2)(3)【解析】

根據(jù)折疊圖形,,由線面垂直的判定定理可得平面,再根據(jù)平面,得到.(2)根據(jù),以為坐標(biāo)原點(diǎn),為軸建立空間直角坐標(biāo)系,根據(jù),可知,,表示相應(yīng)點(diǎn)的坐標(biāo),分別求得平面與平面的法向量,代入求解.設(shè)所求幾何體的體積為,設(shè)為高,則,表示梯形BEFD和ABD的面積由,再利用導(dǎo)數(shù)求最值.【詳解】(1)證明:不妨設(shè)與的交點(diǎn)為與的交點(diǎn)為由題知,,則有又,則有由折疊可知所以可證由平面平面,則有平面又因?yàn)槠矫?,所?...(2)解:依題意,有平面平面,又平面,則有平面,,又由題意知,如圖所示:以為坐標(biāo)原點(diǎn),為軸建立如圖所示的空間直角坐標(biāo)系由題意知由可知,則則有,,設(shè)平面與平面的法向量分別為則有則所以因?yàn)?,解得設(shè)所求幾何體的體積為,設(shè),則,當(dāng)時(shí),,當(dāng)時(shí),在是增函數(shù),在上是減函數(shù)當(dāng)時(shí),有最大值,即六面體的體積的最大值是【點(diǎn)睛】本題主要考查線線垂直,線面垂直,面面垂直的轉(zhuǎn)化,二面角的向量求法和空間幾何體的體積,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題.20、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;【解析】

(1)推導(dǎo)出,由是的中點(diǎn),能證明是有中點(diǎn).(2)作于點(diǎn),推導(dǎo)出平面,從而,由,能證明平面,由此能證明平面平面.【詳解】證明:(1)在三棱錐中,平面,平面平面,平面,,在中,是的中點(diǎn),是有中點(diǎn).(2)在三棱錐中,是銳角三角形,在中,可作于點(diǎn),平面平面,平面平面,平面,平面,平面,,,,平面,平面,平面平面.【點(diǎn)睛】本題考查線段中點(diǎn)的證明,考查面

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論