版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
新疆生產(chǎn)建設兵團四校2025屆高三下學期聯(lián)合考試數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.高斯是德國著名的數(shù)學家,近代數(shù)學奠基者之一,享有“數(shù)學王子”的稱號,用其名字命名的“高斯函數(shù)”為:設,用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,,已知函數(shù)(),則函數(shù)的值域為()A. B. C. D.2.已知,,,則()A. B.C. D.3.將3個黑球3個白球和1個紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種4.五行學說是華夏民族創(chuàng)造的哲學思想,是華夏文明重要組成部分.古人認為,天下萬物皆由金、木、水、火、土五類元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關系.若從5類元素中任選2類元素,則2類元素相生的概率為()A. B. C. D.5.已知集合(),若集合,且對任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.6.已知函數(shù),給出下列四個結(jié)論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調(diào)遞減;④若對任意,都有成立,則的最小值為;其中正確結(jié)論的個數(shù)是()A. B. C. D.7.已知F是雙曲線(k為常數(shù))的一個焦點,則點F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.28.已知函數(shù),若關于的不等式恰有1個整數(shù)解,則實數(shù)的最大值為()A.2 B.3 C.5 D.89.設,隨機變量的分布列是01則當在內(nèi)增大時,()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大10.將函數(shù)的圖象分別向右平移個單位長度與向左平移(>0)個單位長度,若所得到的兩個圖象重合,則的最小值為()A. B. C. D.11.以下三個命題:①在勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這樣的抽樣是分層抽樣;②若兩個變量的線性相關性越強,則相關系數(shù)的絕對值越接近于1;③對分類變量與的隨機變量的觀測值來說,越小,判斷“與有關系”的把握越大;其中真命題的個數(shù)為()A.3 B.2 C.1 D.012.函數(shù)的一個單調(diào)遞增區(qū)間是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是函數(shù)的極大值點,則的取值范圍是____________.14.已知雙曲線(,)的左,右焦點分別為,,過點的直線與雙曲線的左,右兩支分別交于,兩點,若,,則雙曲線的離心率為__________.15.“直線l1:與直線l2:平行”是“a=2”的_______條件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).16.設是公差不為0的等差數(shù)列的前n項和,且,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)年,山東省高考將全面實行“選”的模式(即:語文、數(shù)學、外語為必考科目,剩下的物理、化學、歷史、地理、生物、政治六科任選三科進行考試).為了了解學生對物理學科的喜好程度,某高中從高一年級學生中隨機抽取人做調(diào)查.統(tǒng)計顯示,男生喜歡物理的有人,不喜歡物理的有人;女生喜歡物理的有人,不喜歡物理的有人.(1)據(jù)此資料判斷是否有的把握認為“喜歡物理與性別有關”;(2)為了了解學生對選科的認識,年級決定召開學生座談會.現(xiàn)從名男同學和名女同學(其中男女喜歡物理)中,選取名男同學和名女同學參加座談會,記參加座談會的人中喜歡物理的人數(shù)為,求的分布列及期望.,其中.18.(12分)在考察疫情防控工作中,某區(qū)衛(wèi)生防控中心提出了“要堅持開展愛國衛(wèi)生運動,從人居環(huán)境改善、飲食習慣、社會心理健康、公共衛(wèi)生設施等多個方面開展,特別是要堅決杜絕食用野生動物的陋習,提倡文明健康、綠色環(huán)保的生活方式”的要求.某小組通過問卷調(diào)查,隨機收集了該區(qū)居民六類日常生活習慣的有關數(shù)據(jù).六類習慣是:(1)衛(wèi)生習慣狀況類;(2)垃圾處理狀況類;(3)體育鍛煉狀況類;(4)心理健康狀況類;(5)膳食合理狀況類;(6)作息規(guī)律狀況類.經(jīng)過數(shù)據(jù)整理,得到下表:衛(wèi)生習慣狀況類垃圾處理狀況類體育鍛煉狀況類心理健康狀況類膳食合理狀況類作息規(guī)律狀況類有效答卷份數(shù)380550330410400430習慣良好頻率0.60.90.80.70.650.6假設每份調(diào)查問卷只調(diào)查上述六類狀況之一,各類調(diào)查是否達到良好標準相互獨立.(1)從小組收集的有效答卷中隨機選取1份,求這份試卷的調(diào)查結(jié)果是膳食合理狀況類中習慣良好者的概率;(2)從該區(qū)任選一位居民,試估計他在“衛(wèi)生習慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習慣方面,至少具備兩類良好習慣的概率;(3)利用上述六類習慣調(diào)查的排序,用“”表示任選一位第k類受訪者是習慣良好者,“”表示任選一位第k類受訪者不是習慣良好者().寫出方差,,,,,的大小關系.19.(12分)數(shù)列的前項和為,且.數(shù)列滿足,其前項和為.(1)求數(shù)列與的通項公式;(2)設,求數(shù)列的前項和.20.(12分)已知函數(shù)的定義域為,且滿足,當時,有,且.(1)求不等式的解集;(2)對任意,恒成立,求實數(shù)的取值范圍.21.(12分)如圖,在矩形中,,,點是邊上一點,且,點是的中點,將沿著折起,使點運動到點處,且滿足.(1)證明:平面;(2)求二面角的余弦值.22.(10分)已知曲線的參數(shù)方程為為參數(shù)),以直角坐標系原點為極點,以軸正半軸為極軸并取相同的單位長度建立極坐標系.(1)求曲線的極坐標方程,并說明其表示什么軌跡;(2)若直線的極坐標方程為,求曲線上的點到直線的最大距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
利用換元法化簡解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質(zhì)求得的取值范圍,由此求得的值域.【詳解】因為(),所以,令(),則(),函數(shù)的對稱軸方程為,所以,,所以,所以的值域為.故選:B【點睛】本小題考查函數(shù)的定義域與值域等基礎知識,考查學生分析問題,解決問題的能力,運算求解能力,轉(zhuǎn)化與化歸思想,換元思想,分類討論和應用意識.2、C【解析】
利用二倍角公式,和同角三角函數(shù)的商數(shù)關系式,化簡可得,即可求得結(jié)果.【詳解】,所以,即.故選:C.【點睛】本題考查三角恒等變換中二倍角公式的應用和弦化切化簡三角函數(shù),難度較易.3、D【解析】
采取分類計數(shù)和分步計數(shù)相結(jié)合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時將紅球插入6個球組成的7個空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時紅球只能插入兩個相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點睛】本題考查排列組合公式的具體應用,插空法的應用,屬于基礎題4、A【解析】
列舉出金、木、水、火、土任取兩個的所有結(jié)果共10種,其中2類元素相生的結(jié)果有5種,再根據(jù)古典概型概率公式可得結(jié)果.【詳解】金、木、水、火、土任取兩類,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結(jié)果,其中兩類元素相生的有火木、火土、木水、水金、金土共5結(jié)果,所以2類元素相生的概率為,故選A.【點睛】本題主要考查古典概型概率公式的應用,屬于基礎題,利用古典概型概率公式求概率時,找準基本事件個數(shù)是解題的關鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.5、C【解析】
根據(jù)題目中的基底定義求解.【詳解】因為,,,,,,所以能作為集合的基底,故選:C【點睛】本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎題.6、C【解析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結(jié)合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯誤;當時,,單調(diào)遞減,故③正確;若對任意,都有成立,則為最小值點,為最大值點,則的最小值為,故④正確.故選:C.【點睛】本題考查三角函數(shù)的綜合運用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問題.7、D【解析】
分析可得,再去絕對值化簡成標準形式,進而根據(jù)雙曲線的性質(zhì)求解即可.【詳解】當時,等式不是雙曲線的方程;當時,,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎題.8、D【解析】
畫出函數(shù)的圖象,利用一元二次不等式解法可得解集,再利用數(shù)形結(jié)合即可得出.【詳解】解:函數(shù),如圖所示當時,,由于關于的不等式恰有1個整數(shù)解因此其整數(shù)解為3,又∴,,則當時,,則不滿足題意;當時,當時,,沒有整數(shù)解當時,,至少有兩個整數(shù)解綜上,實數(shù)的最大值為故選:D【點睛】本題主要考查了根據(jù)函數(shù)零點的個數(shù)求參數(shù)范圍,屬于較難題.9、C【解析】
,,判斷其在內(nèi)的單調(diào)性即可.【詳解】解:根據(jù)題意在內(nèi)遞增,,是以為對稱軸,開口向下的拋物線,所以在上單調(diào)遞減,故選:C.【點睛】本題考查了利用隨機變量的分布列求隨機變量的期望與方差,屬于中檔題.10、B【解析】
首先根據(jù)函數(shù)的圖象分別向左與向右平移m,n個單位長度后,所得的兩個圖像重合,那么,利用的最小正周期為,從而求得結(jié)果.【詳解】的最小正周期為,那么(∈),于是,于是當時,最小值為,故選B.【點睛】該題考查的是有關三角函數(shù)的周期與函數(shù)圖象平移之間的關系,屬于簡單題目.11、C【解析】
根據(jù)抽樣方式的特征,可判斷①;根據(jù)相關系數(shù)的性質(zhì),可判斷②;根據(jù)獨立性檢驗的方法和步驟,可判斷③.【詳解】①根據(jù)抽樣是間隔相同,且樣本間無明顯差異,故①應是系統(tǒng)抽樣,即①為假命題;②兩個隨機變量相關性越強,則相關系數(shù)的絕對值越接近于1;兩個隨機變量相關性越弱,則相關系數(shù)的絕對值越接近于0;故②為真命題;③對分類變量與的隨機變量的觀測值來說,越小,“與有關系”的把握程度越小,故③為假命題.故選:.【點睛】本題以命題的真假判斷為載體考查了抽樣方法、相關系數(shù)、獨立性檢驗等知識點,屬于基礎題.12、D【解析】
利用同角三角函數(shù)的基本關系式、二倍角公式和輔助角公式化簡表達式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項.【詳解】因為,由單調(diào)遞增,則(),解得(),當時,D選項正確.C選項是遞減區(qū)間,A,B選項中有部分增區(qū)間部分減區(qū)間.故選:D【點睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎知識;考查運算求解能力,推理論證能力,數(shù)形結(jié)合思想,應用意識.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
方法一:令,則,,當,時,,單調(diào)遞減,∴時,,,且,∴在上單調(diào)遞增,時,,,且,∴在上單調(diào)遞減,∴是函數(shù)的極大值點,∴滿足題意;當時,存在使得,即,又在上單調(diào)遞減,∴時,,,所以,這與是函數(shù)的極大值點矛盾.綜上,.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點,由知須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時,與相切于原點,所以根據(jù)與的圖象關系,可得.14、【解析】
設,由雙曲線的定義得出:,由得為等腰三角形,設,根據(jù),可求出,得出,再結(jié)合焦點三角形,利用余弦定理:求出和的關系,即可得出離心率.【詳解】解:設,由雙曲線的定義得出:,,由圖可知:,又,即,則,為等腰三角形,,設,,則,,即,解得:,則,,解得:,,解得:,,在中,由余弦定理得:,即:,解得:,即.故答案為:.【點睛】本題考查雙曲線的定義的應用,以及余弦定理的應用,求雙曲線離心率.15、必要不充分【解析】
先求解直線l1與直線l2平行的等價條件,然后進行判斷.【詳解】“直線l1:與直線l2:平行”等價于a=±2,故“直線l1:與直線l2:平行”是“a=2”的必要不充分條件.故答案為:必要不充分.【點睛】本題主要考查充分必要條件的判定,把已知條件進行等價轉(zhuǎn)化是求解這類問題的關鍵,側(cè)重考查邏輯推理的核心素養(yǎng).16、18【解析】
將已知已知轉(zhuǎn)化為的形式,化簡后求得,利用等差數(shù)列前公式化簡,由此求得表達式的值.【詳解】因為,所以.故填:.【點睛】本題考查等差數(shù)列基本量的計算,考查等差數(shù)列的性質(zhì)以及求和,考查運算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)有的把握認為喜歡物理與性別有關;(2)分布列見解析,.【解析】
(1)根據(jù)題目所給信息,列出列聯(lián)表,計算的觀測值,對照臨界值表可得出結(jié)論;(2)設參加座談會的人中喜歡物理的男同學有人,女同學有人,則,確定的所有取值為、、、、.根據(jù)計數(shù)原理計算出每個所對應的概率,列出分布列計算期望即可.【詳解】(1)根據(jù)所給條件得列聯(lián)表如下:男女合計喜歡物理不喜歡物理合計,所以有的把握認為喜歡物理與性別有關;(2)設參加座談會的人中喜歡物理的男同學有人,女同學有人,則,由題意可知,的所有可能取值為、、、、.,,,,.所以的分布列為:所以.【點睛】本題考查了獨立性檢驗、離散型隨機變量的概率分布列.離散型隨機變量的期望.屬于中等題.18、(1)(2)(3)【解析】
(1)設“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類中習慣良好者“的事件為,根據(jù)古典概型求出即可;(2)設該區(qū)“衛(wèi)生習慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,,設事件為“該居民在“衛(wèi)生習慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習慣方面,至少具備兩類良好習慣“,則(E),求出即可;(3)根據(jù)題意,寫出即可.【詳解】(1)設“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類中習慣良好者“的事件為,有效問卷共有(份,其中受訪者中膳食合理習慣良好的人數(shù)是人,故(A);(2)設該區(qū)“衛(wèi)生習慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,,根據(jù)題意,可知(A),(B),(C),設事件為“該居民在“衛(wèi)生習慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習慣方面,至少具備兩類良好習慣“則.所以該居民在“衛(wèi)生習慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習慣至少具備2個良好習慣的概率為0.766.(3).【點睛】本題考查了古典概型求概率,獨立性事件,互斥性事件求概率等,考查運算能力和事件應用能力,中檔題.19、(1),;(2).【解析】
(1)令可求得的值,令,由得出,兩式相減可推導出數(shù)列為等比數(shù)列,確定該數(shù)列的公比,利用等比數(shù)列的通項公式可求得數(shù)列的通項公式,再利用對數(shù)的運算性質(zhì)可得出數(shù)列的通項公式;(2)運用等差數(shù)列的求和公式,運用數(shù)列的分組求和和裂項相消求和,化簡可得.【詳解】(1)當時,,所以;當時,,得,即,所以,數(shù)列是首項為,公比為的等比數(shù)列,.;(2)由(1)知數(shù)列是首項為,公差為的等差數(shù)列,.,.所以.【點睛】本題考查數(shù)列的遞推式的運用,注意結(jié)合等比數(shù)列的定義和通項公式,考查數(shù)列的求和方法:分組求和法和裂項相消求和,考查運算能力,屬于中檔題.20、(1);(2).【解析】
(1)利用定義法求出函數(shù)在上單調(diào)遞增,由和,求出,求出,運用單調(diào)性求出不等式的解集;(2)由于恒成立,由(1)得出在上單調(diào)遞增,恒成立,設,利用三角恒等變換化簡,結(jié)合恒成立的條件,構(gòu)造新函數(shù),利用單調(diào)性和最值,求出實數(shù)的取值范圍.【詳解】(1)設,,所以函數(shù)在上單調(diào)遞增,又因為和,則,所以得解得,即,故的取值范圍為;(2)由于恒成立,恒成立,設,則,令,則,所以在區(qū)間上單調(diào)遞增,所以,根據(jù)條
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版導游帶團外語翻譯服務合同范本3篇
- 2024年度豬場種豬引進與繁殖合作合同2篇
- 2024版建筑工程土工膜損壞責任賠償合同3篇
- 2024版安全生產(chǎn)責任保險評估與技術服務合同3篇
- 2024年度機場接送包車服務合同
- 2024年度智能家居設備購買安裝合同的售后服務及保修條款3篇
- 2024年度合作研發(fā)新能源汽車技術共享合同3篇
- 2024年度國際物流運輸服務合同英文模板3篇
- 2024版國內(nèi)航線船舶運輸合同
- 2024版親子樂園室內(nèi)裝修設計合同2篇
- 300KW并網(wǎng)電站方案
- 護理倫理學 緒論 高校版
- 防墜落裝置技術規(guī)范書
- 民主推薦測評滿意率測評表(樣表)及匯總表
- 糧食熏蒸安全操作規(guī)程資料
- 最新自來水公司抄表員先進事跡材料-范文精品
- 汽輪機本體結(jié)構(gòu)簡介
- (完整版)小學教師安全工作考核細則
- 三軸水泥土攪拌樁
- 幼兒園健康教案:系鞋帶
- 拖欠農(nóng)民工工資排查表
評論
0/150
提交評論