版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽等省全國名校2025屆高考數(shù)學(xué)三模試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,,,,點(diǎn)滿足,則等于()A.10 B.9 C.8 D.72.是虛數(shù)單位,則()A.1 B.2 C. D.3.某地區(qū)高考改革,實(shí)行“3+2+1”模式,即“3”指語文、數(shù)學(xué)、外語三門必考科目,“1”指在物理、歷史兩門科目中必選一門,“2”指在化學(xué)、生物、政治、地理以及除了必選一門以外的歷史或物理這五門學(xué)科中任意選擇兩門學(xué)科,則一名學(xué)生的不同選科組合有()A.8種 B.12種 C.16種 D.20種4.《九章算術(shù)》“少廣”算法中有這樣一個數(shù)的序列:列出“全步”(整數(shù)部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分?jǐn)?shù)進(jìn)行通分約簡,又用最下面的分母去遍乘諸(未通者)分子和以通之?dāng)?shù),逐個照此同樣方法,直至全部為整數(shù),例如:及時,如圖:記為每個序列中最后一列數(shù)之和,則為()A.147 B.294 C.882 D.17645.總體由編號為01,02,...,39,40的40個個體組成.利用下面的隨機(jī)數(shù)表選取5個個體,選取方法是從隨機(jī)數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為()A.23 B.21 C.35 D.326.已知是第二象限的角,,則()A. B. C. D.7.已知三棱錐的外接球半徑為2,且球心為線段的中點(diǎn),則三棱錐的體積的最大值為()A. B. C. D.8.設(shè)集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}9.已知是雙曲線的左右焦點(diǎn),過的直線與雙曲線的兩支分別交于兩點(diǎn)(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.10.記遞增數(shù)列的前項(xiàng)和為.若,,且對中的任意兩項(xiàng)與(),其和,或其積,或其商仍是該數(shù)列中的項(xiàng),則()A. B.C. D.11.tan570°=()A. B.- C. D.12.若復(fù)數(shù)滿足,則對應(yīng)的點(diǎn)位于復(fù)平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.若向量與向量垂直,則______.14.的展開式中的系數(shù)為__________.15.函數(shù)在的零點(diǎn)個數(shù)為_________.16.若函數(shù)()的圖象與直線相切,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若關(guān)于的不等式的整數(shù)解有且僅有一個值,當(dāng)時,求不等式的解集;(2)已知,若,使得成立,求實(shí)數(shù)的取值范圍.18.(12分)某機(jī)構(gòu)組織的家庭教育活動上有一個游戲,每次由一個小孩與其一位家長參與,測試家長對小孩飲食習(xí)慣的了解程度.在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據(jù)自己的喜愛程度對其排序,然后由家長猜測小孩的排序結(jié)果.設(shè)小孩對四種食物排除的序號依次為xAxBxCxD,家長猜測的序號依次為yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四個數(shù)字的一種排列.定義隨機(jī)變量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X來衡量家長對小孩飲食習(xí)慣的了解程度.(1)若參與游戲的家長對小孩的飲食習(xí)慣完全不了解.(?。┣笏麄冊谝惠営螒蛑?,對四種食物排出的序號完全不同的概率;(ⅱ)求X的分布列(簡要說明方法,不用寫出詳細(xì)計算過程);(2)若有一組小孩和家長進(jìn)行來三輪游戲,三輪的結(jié)果都滿足X<4,請判斷這位家長對小孩飲食習(xí)慣是否了解,說明理由.19.(12分)已知函數(shù).(1)求曲線在點(diǎn)處的切線方程;(2)若對任意的,當(dāng)時,都有恒成立,求最大的整數(shù).(參考數(shù)據(jù):)20.(12分)據(jù)《人民網(wǎng)》報道,美國國家航空航天局(NASA)發(fā)文稱,相比20年前世界變得更綠色了,衛(wèi)星資料顯示中國和印度的行動主導(dǎo)了地球變綠.據(jù)統(tǒng)計,中國新增綠化面積的來自于植樹造林,下表是中國十個地區(qū)在去年植樹造林的相關(guān)數(shù)據(jù).(造林總面積為人工造林、飛播造林、新封山育林、退化林修復(fù)、人工更新的面積之和)單位:公頃地區(qū)造林總面積造林方式人工造林飛播造林新封山育林退化林修復(fù)人工更新內(nèi)蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重慶2263331006006240063333陜西297642184108336026386516067甘肅325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629寧夏91531589602293882981335北京1906410012400039991053(1)請根據(jù)上述數(shù)據(jù)分別寫出在這十個地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);(2)在這十個地區(qū)中,任選一個地區(qū),求該地區(qū)新封山育林面積占造林總面積的比值超過的概率;(3)在這十個地區(qū)中,從退化林修復(fù)面積超過一萬公頃的地區(qū)中,任選兩個地區(qū),記X為這兩個地區(qū)中退化林修復(fù)面積超過六萬公頃的地區(qū)的個數(shù),求X的分布列及數(shù)學(xué)期望.21.(12分)在中,角的對邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長.22.(10分)已知橢圓的右焦點(diǎn)為,過作軸的垂線交橢圓于點(diǎn)(點(diǎn)在軸上方),斜率為的直線交橢圓于兩點(diǎn),過點(diǎn)作直線交橢圓于點(diǎn),且,直線交軸于點(diǎn).(1)設(shè)橢圓的離心率為,當(dāng)點(diǎn)為橢圓的右頂點(diǎn)時,的坐標(biāo)為,求的值.(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
利用已知條件,表示出向量,然后求解向量的數(shù)量積.【詳解】在中,,,,點(diǎn)滿足,可得則==【點(diǎn)睛】本題考查了向量的數(shù)量積運(yùn)算,關(guān)鍵是利用基向量表示所求向量.2、C【解析】
由復(fù)數(shù)除法的運(yùn)算法則求出,再由模長公式,即可求解.【詳解】由.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法和模,屬于基礎(chǔ)題.3、C【解析】
分兩類進(jìn)行討論:物理和歷史只選一門;物理和歷史都選,分別求出兩種情況對應(yīng)的組合數(shù),即可求出結(jié)果.【詳解】若一名學(xué)生只選物理和歷史中的一門,則有種組合;若一名學(xué)生物理和歷史都選,則有種組合;因此共有種組合.故選C【點(diǎn)睛】本題主要考查兩個計數(shù)原理,熟記其計數(shù)原理的概念,即可求出結(jié)果,屬于常考題型.4、A【解析】
根據(jù)題目所給的步驟進(jìn)行計算,由此求得的值.【詳解】依題意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故選:A【點(diǎn)睛】本小題主要考查合情推理,考查中國古代數(shù)學(xué)文化,屬于基礎(chǔ)題.5、B【解析】
根據(jù)隨機(jī)數(shù)表法的抽樣方法,確定選出來的第5個個體的編號.【詳解】隨機(jī)數(shù)表第1行的第4列和第5列數(shù)字為4和6,所以從這兩個數(shù)字開始,由左向右依次選取兩個數(shù)字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在編號01,02,…,39,40內(nèi)的有:16,26,16,24,23,21,…依次不重復(fù)的第5個編號為21.故選:B【點(diǎn)睛】本小題主要考查隨機(jī)數(shù)表法進(jìn)行抽樣,屬于基礎(chǔ)題.6、D【解析】
利用誘導(dǎo)公式和同角三角函數(shù)的基本關(guān)系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因?yàn)?由誘導(dǎo)公式可得,,即,因?yàn)?所以,由二倍角的正弦公式可得,,所以.故選:D【點(diǎn)睛】本題考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和二倍角的正弦公式;考查運(yùn)算求解能力和知識的綜合運(yùn)用能力;屬于中檔題.7、C【解析】
由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿足,結(jié)合幾何關(guān)系和圖形即可求解【詳解】先畫出圖形,由球心到各點(diǎn)距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時,取最大值4,要使三棱錐體積最大,則需使高,此時,故選:C【點(diǎn)睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎(chǔ)題8、C【解析】
先求集合A,再用列舉法表示出集合B,再根據(jù)交集的定義求解即可.【詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.【點(diǎn)睛】本題主要考查集合的交集運(yùn)算,屬于基礎(chǔ)題.9、D【解析】
根據(jù)雙曲線的定義可得的邊長為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點(diǎn)距離用表示,然后用余弦定理建立關(guān)系式.10、D【解析】
由題意可得,從而得到,再由就可以得出其它各項(xiàng)的值,進(jìn)而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數(shù)列中的項(xiàng),或者或者是該數(shù)列中的項(xiàng),又?jǐn)?shù)列是遞增數(shù)列,,,,只有是該數(shù)列中的項(xiàng),同理可以得到,,,也是該數(shù)列中的項(xiàng),且有,,或(舍,,根據(jù),,,同理易得,,,,,,,故選:D.【點(diǎn)睛】本題考查數(shù)列的新定義的理解和運(yùn)用,以及運(yùn)算能力和推理能力,屬于中檔題.11、A【解析】
直接利用誘導(dǎo)公式化簡求解即可.【詳解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故選:A.【點(diǎn)睛】本題考查三角函數(shù)的恒等變換及化簡求值,主要考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.12、D【解析】
利用復(fù)數(shù)模的計算、復(fù)數(shù)的除法化簡復(fù)數(shù),再根據(jù)復(fù)數(shù)的幾何意義,即可得答案;【詳解】,對應(yīng)的點(diǎn),對應(yīng)的點(diǎn)位于復(fù)平面的第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)模的計算、復(fù)數(shù)的除法、復(fù)數(shù)的幾何意義,考查運(yùn)算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、0【解析】
直接根據(jù)向量垂直計算得到答案.【詳解】向量與向量垂直,則,故.故答案為:.【點(diǎn)睛】本題考查了根據(jù)向量垂直求參數(shù),意在考查學(xué)生的計算能力.14、3【解析】
分別用1和進(jìn)行分類討論即可【詳解】當(dāng)?shù)谝粋€因式取1時,第二個因式應(yīng)取含的項(xiàng),則對應(yīng)系數(shù)為:;當(dāng)?shù)谝粋€因式取時,第二個因式應(yīng)取含的項(xiàng),則對應(yīng)系數(shù)為:;故的展開式中的系數(shù)為.故答案為:3【點(diǎn)睛】本題考查二項(xiàng)式定理中具體項(xiàng)對應(yīng)系數(shù)的求解,屬于基礎(chǔ)題15、1【解析】
本問題轉(zhuǎn)化為曲線交點(diǎn)個數(shù)問題,在同一直角坐標(biāo)系內(nèi),畫出函數(shù)的圖象,利用數(shù)形結(jié)合思想進(jìn)行求解即可.【詳解】問題函數(shù)在的零點(diǎn)個數(shù),可以轉(zhuǎn)化為曲線交點(diǎn)個數(shù)問題.在同一直角坐標(biāo)系內(nèi),畫出函數(shù)的圖象,如下圖所示:由圖象可知:當(dāng)時,兩個函數(shù)只有一個交點(diǎn).故答案為:1【點(diǎn)睛】本題考查了求函數(shù)的零點(diǎn)個數(shù)問題,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想.16、2【解析】
設(shè)切點(diǎn)由已知可得,即可解得所求.【詳解】設(shè),因?yàn)椋?,即,又?所以,即,.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,難度較易.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)求解不等式,結(jié)合整數(shù)解有且僅有一個值,可得,分類討論,求解不等式,即得解;(2)轉(zhuǎn)化,使得成立為,利用不等式性質(zhì),求解二次函數(shù)最小值,代入解不等式即可.【詳解】(1)不等式,即,所以,由,解得.因?yàn)?,所以,?dāng)時,,不等式等價于或或即或或,故,故不等式的解集為.(2)因?yàn)椋?,可得,又由,使得成立,則,解得或.故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查了絕對值不等式的求解和恒成立問題,考查了學(xué)生轉(zhuǎn)化劃歸,分類討論,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.18、(1)(?。áⅲ┓植急硪娊馕觯唬?)理由見解析【解析】
(1)(i)若家長對小孩子的飲食習(xí)慣完全不了解,則家長對小孩的排序是隨意猜測的,家長的排序有種等可能結(jié)果,利用列舉法求出其中滿足“家長的排序與對應(yīng)位置的數(shù)字完全不同”的情況有9種,由此能求出他們在一輪游戲中,對四種食物排出的序號完全不同的概率.
(ii)根據(jù)(i)的分析,同樣只考慮小孩排序?yàn)?234的情況,家長的排序一共有24種情況,由此能求出X的分布列.
(2)假設(shè)家長對小孩的飲食習(xí)慣完全不了解,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結(jié)果都滿足“X<4”的概率為,這個結(jié)果發(fā)生的可能性很小,從而這位家長對小孩飲食習(xí)慣比較了解.【詳解】(1)(i)若家長對小孩子的飲食習(xí)慣完全不了解,則家長對小孩的排序是隨意猜測的,先考慮小孩的排序?yàn)閤A,xB,xC,xD為1234的情況,家長的排序有=24種等可能結(jié)果,其中滿足“家長的排序與對應(yīng)位置的數(shù)字完全不同”的情況有9種,分別為:2143,2341,2413,3142,3412,3421,4123,4312,4321,∴家長的排序與對應(yīng)位置的數(shù)字完全不同的概率P=.基小孩對四種食物的排序是其他情況,只需將角標(biāo)A,B,C,D按照小孩的順序調(diào)整即可,假設(shè)小孩的排序xA,xB,xC,xD為1423的情況,四種食物按1234的排列為ACDB,再研究yAyByCyD的情況即可,其實(shí)這樣處理后與第一種情況的計算結(jié)果是一致的,∴他們在一輪游戲中,對四種食物排出的序號完全不同的概率為.(ii)根據(jù)(i)的分析,同樣只考慮小孩排序?yàn)?234的情況,家長的排序一共有24種情況,列出所有情況,分別計算每種情況下的x的值,X的分布列如下表:X02468101214161820P(2)這位家長對小孩的飲食習(xí)慣比較了解.理由如下:假設(shè)家長對小孩的飲食習(xí)慣完全不了解,由(1)可知,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結(jié)果都滿足“X<4”的概率為()3=,這個結(jié)果發(fā)生的可能性很小,∴這位家長對小孩飲食習(xí)慣比較了解.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合、列舉法等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.19、(1)(2)2【解析】
(1)先求得切點(diǎn)坐標(biāo),利用導(dǎo)數(shù)求得切線的斜率,由此求得切線方程.(2)對分成,兩種情況進(jìn)行分類討論.當(dāng)時,將不等式轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的最小值(設(shè)為)的取值范圍,由的得在上恒成立,結(jié)合一元二次不等式恒成立,判別式小于零列不等式,解不等式求得的取值范圍.【詳解】(1)已知函數(shù),則處即為,又,,可知函數(shù)過點(diǎn)的切線為,即.(2)注意到,不等式中,當(dāng)時,顯然成立;當(dāng)時,不等式可化為令,則,,所以存在,使.由于在上遞增,在上遞減,所以是的唯一零點(diǎn).且在區(qū)間上,遞減,在區(qū)間上,遞增,即的最小值為,令,則,將的最小值設(shè)為,則,因此原式需滿足,即在上恒成立,又,可知判別式即可,即,且可以取到的最大整數(shù)為2.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求切線方程,考查利用導(dǎo)數(shù)研究不等式恒成立問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.20、(1)人工造林面積與總面積比最大的地區(qū)為甘肅省,人工造林面積與總面積比最小的地區(qū)為青海?。唬?);(3)分布列見詳解,數(shù)學(xué)期望為【解析】
(1)通過數(shù)據(jù)的觀察以及計算人工造林面積與造林總面積比值,可得結(jié)果.(2)通過數(shù)據(jù)的觀察以及計算新封山育林面積與造林總面積比值,得出比值超過的地區(qū)個數(shù),然后可得結(jié)果.(3)計算退化林修復(fù)面積超過一萬公頃的地區(qū)中選兩個地區(qū)總數(shù),退化林修復(fù)面積超過六萬公頃的地區(qū)的個數(shù)為,列出所有取值并計算相應(yīng)概率,然后可得結(jié)果.【詳解】(1)人工造林面積與總面積比最大的地區(qū)為甘肅省,人工造林面積與總面積比最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《計量日宣傳》課件
- 《評價判據(jù)》課件
- 鼻結(jié)核的健康宣教
- 2021年機(jī)械密封行業(yè)中密控股分析報告
- 2021年化工行業(yè)分析報告
- 《機(jī)械制造基礎(chǔ)》課件-05篇 第一單元 特種加工概述
- 《計算機(jī)檢索基礎(chǔ)周》課件
- 光過敏的臨床護(hù)理
- 《供應(yīng)商考核辦法》課件
- 毛發(fā)苔蘚的臨床護(hù)理
- 【MOOC】英文技術(shù)寫作-東南大學(xué) 中國大學(xué)慕課MOOC答案
- 2024年21起典型火災(zāi)案例及消防安全知識專題培訓(xùn)(消防月)
- 人教版四年級上冊數(shù)學(xué)【選擇題】專項(xiàng)練習(xí)100題附答案
- DL-T 1476-2023 電力安全工器具預(yù)防性試驗(yàn)規(guī)程
- 國開《Windows網(wǎng)絡(luò)操作系統(tǒng)管理》形考任務(wù)4-配置故障轉(zhuǎn)移群集服務(wù)實(shí)訓(xùn)
- 石灰窯烘爐及開爐方案
- 復(fù)蘇囊的使用PPT
- (完整版)工業(yè)與民用配電設(shè)計手冊
- 教學(xué)論文】《自制教具應(yīng)用于初中物理有效教學(xué)的研究》課題研究報告【教師職稱評定】
- 安全生產(chǎn)工作者個人先進(jìn)事跡材料(word版本)
- 執(zhí)業(yè)藥師注冊委托書.doc
評論
0/150
提交評論