上海市第四中學2025屆高考仿真模擬數(shù)學試卷含解析_第1頁
上海市第四中學2025屆高考仿真模擬數(shù)學試卷含解析_第2頁
上海市第四中學2025屆高考仿真模擬數(shù)學試卷含解析_第3頁
上海市第四中學2025屆高考仿真模擬數(shù)學試卷含解析_第4頁
上海市第四中學2025屆高考仿真模擬數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

上海市第四中學2025屆高考仿真模擬數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.運行如圖所示的程序框圖,若輸出的的值為99,則判斷框中可以填()A. B. C. D.2.已知角的終邊經(jīng)過點,則A. B.C. D.3.正項等比數(shù)列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.4.設為拋物線的焦點,,,為拋物線上三點,若,則().A.9 B.6 C. D.5.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.6.設復數(shù),則=()A.1 B. C. D.7.若點x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(nèi)(包括邊界),則A.-3,1 B.-3,5 C.-∞,-38.執(zhí)行如圖所示的程序框圖,當輸出的時,則輸入的的值為()A.-2 B.-1 C. D.9.已知集合,則()A. B. C. D.10.2019年10月1日,中華人民共和國成立70周年,舉國同慶.將2,0,1,9,10這5個數(shù)字按照任意次序排成一行,拼成一個6位數(shù),則產(chǎn)生的不同的6位數(shù)的個數(shù)為A.96 B.84 C.120 D.36011.下列命題為真命題的個數(shù)是()(其中,為無理數(shù))①;②;③.A.0 B.1 C.2 D.312.的展開式中的一次項系數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,已知點在直線上運動,則下列四個命題中:①三棱錐的體積不變;②;③當為中點時,二面角的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號)14.設隨機變量服從正態(tài)分布,若,則的值是______.15.若,i為虛數(shù)單位,則正實數(shù)的值為______.16.已知兩個單位向量滿足,則向量與的夾角為_____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面直角坐標系中,已知圓C:,橢圓E:()的右頂點A在圓C上,右準線與圓C相切.(1)求橢圓E的方程;(2)設過點A的直線l與圓C相交于另一點M,與橢圓E相交于另一點N.當時,求直線l的方程.18.(12分)為提供市民的健身素質(zhì),某市把四個籃球館全部轉(zhuǎn)為免費民用(1)在一次全民健身活動中,四個籃球館的使用場數(shù)如圖,用分層抽樣的方法從四場館的使用場數(shù)中依次抽取共25場,在中隨機取兩數(shù),求這兩數(shù)和的分布列和數(shù)學期望;(2)設四個籃球館一個月內(nèi)各館使用次數(shù)之和為,其相應維修費用為元,根據(jù)統(tǒng)計,得到如下表的數(shù)據(jù):x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求與的回歸直線方程;②叫做籃球館月惠值,根據(jù)①的結(jié)論,試估計這四個籃球館月惠值最大時的值參考數(shù)據(jù)和公式:,19.(12分)設函數(shù).(1)若函數(shù)在是單調(diào)遞減的函數(shù),求實數(shù)的取值范圍;(2)若,證明:.20.(12分)已知集合,集合.(1)求集合;(2)若,求實數(shù)的取值范圍.21.(12分)平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸,取相同的單位長度建立極坐標系,曲線的極坐標方程為,直線的極坐標方程為,點.(1)求曲線的極坐標方程與直線的直角坐標方程;(2)若直線與曲線交于點,曲線與曲線交于點,求的面積.22.(10分)已知橢圓:()的離心率為,且橢圓的一個焦點與拋物線的焦點重合.過點的直線交橢圓于,兩點,為坐標原點.(1)若直線過橢圓的上頂點,求的面積;(2)若,分別為橢圓的左、右頂點,直線,,的斜率分別為,,,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

模擬執(zhí)行程序框圖,即可容易求得結(jié)果.【詳解】運行該程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此時要輸出的值為99.此時.故選:C.【點睛】本題考查算法與程序框圖,考查推理論證能力以及化歸轉(zhuǎn)化思想,涉及判斷條件的選擇,屬基礎題.2、D【解析】因為角的終邊經(jīng)過點,所以,則,即.故選D.3、D【解析】

設等比數(shù)列的公比為q,,運用等比數(shù)列的性質(zhì)和通項公式,以及等差數(shù)列的中項性質(zhì),解方程可得公比q.【詳解】由題意,正項等比數(shù)列中,,可得,即,與的等差中項為4,即,設公比為q,則,則負的舍去,故選D.【點睛】本題主要考查了等差數(shù)列的中項性質(zhì)和等比數(shù)列的通項公式的應用,其中解答中熟記等比數(shù)列通項公式,合理利用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了方程思想和運算能力,屬于基礎題.4、C【解析】

設,,,由可得,利用定義將用表示即可.【詳解】設,,,由及,得,故,所以.故選:C.【點睛】本題考查利用拋物線定義求焦半徑的問題,考查學生等價轉(zhuǎn)化的能力,是一道容易題.5、B【解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.6、A【解析】

根據(jù)復數(shù)的除法運算,代入化簡即可求解.【詳解】復數(shù),則故選:A.【點睛】本題考查了復數(shù)的除法運算與化簡求值,屬于基礎題.7、D【解析】

畫出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內(nèi)的點(x,y)【詳解】畫出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內(nèi)的點(x,y)和定點P(2,-1)設k=y+1x-2,結(jié)合圖形可得k≥k由題意得點A,B的坐標分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點睛】解答本題的關(guān)鍵有兩個:一是根據(jù)數(shù)形結(jié)合的方法求解問題,即把y+1x-28、B【解析】若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,符合題意;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;綜上選B.9、B【解析】

計算,再計算交集得到答案【詳解】,表示偶數(shù),故.故選:.【點睛】本題考查了集合的交集,意在考查學生的計算能力.10、B【解析】

2,0,1,9,10按照任意次序排成一行,得所有不以0開頭的排列數(shù)共個,其中含有2個10的排列數(shù)共個,所以產(chǎn)生的不同的6位數(shù)的個數(shù)為.故選B.11、C【解析】

對于①中,根據(jù)指數(shù)冪的運算性質(zhì)和不等式的性質(zhì),可判定值正確的;對于②中,構(gòu)造新函數(shù),利用導數(shù)得到函數(shù)為單調(diào)遞增函數(shù),進而得到,即可判定是錯誤的;對于③中,構(gòu)造新函數(shù),利用導數(shù)求得函數(shù)的最大值為,進而得到,即可判定是正確的.【詳解】由題意,對于①中,由,可得,根據(jù)不等式的性質(zhì),可得成立,所以是正確的;對于②中,設函數(shù),則,所以函數(shù)為單調(diào)遞增函數(shù),因為,則又由,所以,即,所以②不正確;對于③中,設函數(shù),則,當時,,函數(shù)單調(diào)遞增,當時,,函數(shù)單調(diào)遞減,所以當時,函數(shù)取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點睛】本題主要考查了不等式的性質(zhì),以及導數(shù)在函數(shù)中的綜合應用,其中解答中根據(jù)題意,合理構(gòu)造新函數(shù),利用導數(shù)求得函數(shù)的單調(diào)性和最值是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與運算能力,屬于中檔試題.12、B【解析】

根據(jù)多項式乘法法則得出的一次項系數(shù),然后由等差數(shù)列的前項和公式和組合數(shù)公式得出結(jié)論.【詳解】由題意展開式中的一次項系數(shù)為.故選:B.【點睛】本題考查二項式定理的應用,應用多項式乘法法則可得展開式中某項系數(shù).同時本題考查了組合數(shù)公式.二、填空題:本題共4小題,每小題5分,共20分。13、①②④【解析】

①∵,∴平面

,得出上任意一點到平面的距離相等,所以判斷命題①;②由已知得出點P在面上的射影在上,根據(jù)線面垂直的判定和性質(zhì)或三垂線定理,可判斷命題②;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,運用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過作平面交于點,做點關(guān)于面對稱的點,使得點在平面內(nèi),根據(jù)對稱性和兩點之間線段最短,可求得當點在點時,在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面

,所以上任意一點到平面的距離相等,所以三棱錐的體積不變,所以①正確;

②在直線上運動時,點P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,設正方體的棱長為2.則:,,所以,設面的法向量為,則,即,令,則,設面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過作平面交于點,做點關(guān)于面對稱的點,使得點在平面內(nèi),則,所以,當點在點時,在一條直線上,取得最小值.因為正方體的棱長為2,所以設點的坐標為,,,所以,所以,又所以,所以,,,故④正確.

故答案為:①②④.【點睛】本題考查空間里的線線,線面,面面關(guān)系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運用對稱的思想,兩點之間線段最短進行求解,屬于難度題.14、1【解析】

由題得,解不等式得解.【詳解】因為,所以,所以c=1.故答案為1【點睛】本題主要考查正態(tài)分布的圖像和性質(zhì),意在考查學生對該知識的理解掌握水平和分析推理能力.15、【解析】

利用復數(shù)模的運算性質(zhì),即可得答案.【詳解】由已知可得:,,解得.故答案為:.【點睛】本題考查復數(shù)模的運算性質(zhì),考查推理能力與計算能力,屬于基礎題.16、【解析】

由得,即得解.【詳解】由題意可知,則.解得,所以,向量與的夾角為.故答案為:【點睛】本題主要考查平面向量的數(shù)量積的計算和夾角的計算,意在考查學生對這些知識的理解掌握水平.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或.【解析】

(1)圓的方程已知,根據(jù)條件列出方程組,解方程即得;(2)設,,顯然直線l的斜率存在,方法一:設直線l的方程為:,將直線方程和橢圓方程聯(lián)立,消去,可得,同理直線方程和圓方程聯(lián)立,可得,再由可解得,即得;方法二:設直線l的方程為:,與橢圓方程聯(lián)立,可得,將其與圓方程聯(lián)立,可得,由可解得,即得.【詳解】(1)記橢圓E的焦距為().右頂點在圓C上,右準線與圓C:相切.解得,,橢圓方程為:.(2)法1:設,,顯然直線l的斜率存在,設直線l的方程為:.直線方程和橢圓方程聯(lián)立,由方程組消去y得,整理得.由,解得.直線方程和圓方程聯(lián)立,由方程組消去y得,由,解得.又,則有.即,解得,故直線l的方程為或.分法2:設,,當直線l與x軸重合時,不符題意.設直線l的方程為:.由方程組消去x得,,解得.由方程組消去x得,,解得.又,則有.即,解得,故直線l的方程為或.【點睛】本題考查求橢圓的標準方程,以及直線和橢圓的位置關(guān)系,考查學生的分析和運算能力.18、(1)見解析,12.5(2)①②20【解析】

(1)運用分層抽樣,結(jié)合總場次為100,可求得的值,再運用古典概型的概率計算公式可求解果;(2)①由公式可計算的值,進而可求與的回歸直線方程;②求出,再對函數(shù)求導,結(jié)合單調(diào)性,可估計這四個籃球館月惠值最大時的值.【詳解】解:(1)抽樣比為,所以分別是,6,7,8,5所以兩數(shù)之和所有可能取值是:10,12,13,15,,,所以分布列為期望為(2)因為所以,,;②,設,所以當遞增,當遞減所以約惠值最大值時的值為20【點睛】本題考查直方圖的實際應用,涉及求概率,平均數(shù)、擬合直線和導數(shù)等問題,關(guān)鍵是要讀懂題意,屬于中檔題.19、(1)(2)證明見解析【解析】

(1)求出導函數(shù),由在上恒成立,采用分離參數(shù)法求解;(2)觀察函數(shù),不等式湊配后知,利用時可證結(jié)論.【詳解】(1)因為在上單調(diào)遞減,所以,即在上恒成立因為在上是單調(diào)遞減的,所以,所以(2)因為,所以由(1)知,當時,在上單調(diào)遞減所以即所以.【點睛】本題考查用導數(shù)研究函數(shù)的單調(diào)性,考查用導數(shù)證明不等式.解題關(guān)鍵是把不等式與函數(shù)的結(jié)論聯(lián)系起來,利用函數(shù)的特例得出不等式的證明.20、(1);(2).【解析】

(1)求出函數(shù)的定義域,即可求出結(jié)論;(2)化簡集合,根據(jù)確定集合的端點位置,建立的不等量關(guān)系,即可求解.【詳解】(1)由,即得或,所以集合或.(2)集合,由得或,解得或,所以實數(shù)的取值范圍為.【點睛】本題考查集合的運算,集合間的關(guān)系求參數(shù),考查函數(shù)的定義域,屬于基礎題.21、(1).(2)【解析】

(1)根據(jù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論