中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題04 幾何中的三點(diǎn)共線問題(解析版)_第1頁
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題04 幾何中的三點(diǎn)共線問題(解析版)_第2頁
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題04 幾何中的三點(diǎn)共線問題(解析版)_第3頁
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題04 幾何中的三點(diǎn)共線問題(解析版)_第4頁
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題04 幾何中的三點(diǎn)共線問題(解析版)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題04幾何中的三點(diǎn)共線問題幾何壓軸題中的三點(diǎn)共線問題,一般有兩種考查方式:一是:假設(shè)某三點(diǎn)共線,探究線段的長度、線段的數(shù)量與位置關(guān)系、三角形或四邊形的形狀、面積等。在這一類題型,一般都是講三點(diǎn)共線作為條件使用:(1)在探究線段的長度,線段的數(shù)量關(guān)系時(shí),多是利用全等三角形的性質(zhì),相似三角形的性質(zhì),進(jìn)行轉(zhuǎn)化求解,或者利用勾股定理和銳角三角函數(shù)進(jìn)行求解。(2)在探究三角形或四邊形的形狀時(shí),一般先是利用全等三角形的性質(zhì),相似三角形的性質(zhì),勾股定理或者銳角三角函數(shù)求出相應(yīng)的邊長,再根據(jù)幾何圖形的判定進(jìn)行求解即可。(3)在探究面積問題時(shí),一般先是利用全等三角形的性質(zhì),相似三角形的性質(zhì),勾股定理或者銳角三角函數(shù)求出相應(yīng)的邊長,再利用面積公式進(jìn)行計(jì)算即可。(4)在把三點(diǎn)共線作為條件使用時(shí),要注意,在未明確三點(diǎn)位置關(guān)系時(shí),要進(jìn)行分類討論,否則會(huì)出現(xiàn)漏解的情況。二是證明三點(diǎn)共線:證明三點(diǎn)共線常用到以下幾種方法:(1)證明以位于中間點(diǎn)為頂點(diǎn)形成兩個(gè)角的和為180°。(2)先連接兩點(diǎn),證明第三個(gè)點(diǎn)在連線上,具體可以證明三點(diǎn)連線重合(先證平行,再證有公共點(diǎn)),也可以以某一點(diǎn)為頂點(diǎn)構(gòu)造角,證明角相等(如圖:證明∠DCB=∠DCA,在證點(diǎn)B在AC上)。 (2022·吉林長春·統(tǒng)考中考真題)如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)M為邊SKIPIF1<0的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線SKIPIF1<0以每秒SKIPIF1<0個(gè)單位長度的速度向終點(diǎn)B運(yùn)動(dòng),連結(jié)SKIPIF1<0.作點(diǎn)A關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)SKIPIF1<0,連結(jié)SKIPIF1<0、SKIPIF1<0.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.(1)點(diǎn)D到邊SKIPIF1<0的距離為__________;(2)用含t的代數(shù)式表示線段SKIPIF1<0的長;(3)連結(jié)SKIPIF1<0,當(dāng)線段SKIPIF1<0最短時(shí),求SKIPIF1<0的面積;(4)當(dāng)M、SKIPIF1<0、C三點(diǎn)共線時(shí),直接寫出t的值.(1)連接DM,根據(jù)等腰三角形的性質(zhì)可得DM⊥AB,再由勾股定理,即可求解;(2)分兩種情況討論:當(dāng)0≤t≤1時(shí),點(diǎn)P在AD邊上;當(dāng)1<t≤2時(shí),點(diǎn)P在BD邊上,即可求解;(3)過點(diǎn)P作PE⊥DM于點(diǎn)E,根據(jù)題意可得點(diǎn)A的運(yùn)動(dòng)軌跡為以點(diǎn)M為圓心,AM長為半徑的圓,可得到當(dāng)點(diǎn)D、A′、M三點(diǎn)共線時(shí),線段SKIPIF1<0最短,此時(shí)點(diǎn)P在AD上,再證明△PDE∽△ADM,可得SKIPIF1<0,從而得到SKIPIF1<0,在SKIPIF1<0中,由勾股定理可得SKIPIF1<0,即可求解;(4)分兩種情況討論:當(dāng)點(diǎn)SKIPIF1<0位于M、C之間時(shí),此時(shí)點(diǎn)P在AD上;當(dāng)點(diǎn)SKIPIF1<0(SKIPIF1<0)位于CM的延長線上時(shí),此時(shí)點(diǎn)P在BD上,即可求解.【答案】(1)3(2)當(dāng)0≤t≤1時(shí),SKIPIF1<0;當(dāng)1<t≤2時(shí),SKIPIF1<0;(3)SKIPIF1<0(4)SKIPIF1<0或SKIPIF1<0【詳解】(1)解:如圖,連接DM,∵AB=4,SKIPIF1<0,點(diǎn)M為邊SKIPIF1<0的中點(diǎn),∴AM=BM=2,DM⊥AB,∴SKIPIF1<0,即點(diǎn)D到邊SKIPIF1<0的距離為3;故答案為:3(2)解:根據(jù)題意得:當(dāng)0≤t≤1時(shí),點(diǎn)P在AD邊上,SKIPIF1<0;當(dāng)1<t≤2時(shí),點(diǎn)P在BD邊上,SKIPIF1<0;綜上所述,當(dāng)0≤t≤1時(shí),SKIPIF1<0;當(dāng)1<t≤2時(shí),SKIPIF1<0;(3)解:如圖,過點(diǎn)P作PE⊥DM于點(diǎn)E,∵作點(diǎn)A關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)SKIPIF1<0,∴A′M=AM=2,∴點(diǎn)A的運(yùn)動(dòng)軌跡為以點(diǎn)M為圓心,AM長為半徑的圓,∴當(dāng)點(diǎn)D、A′、M三點(diǎn)共線時(shí),線段SKIPIF1<0最短,此時(shí)點(diǎn)P在AD上,∴SKIPIF1<0,根據(jù)題意得:SKIPIF1<0,SKIPIF1<0,由(1)得:DM⊥AB,∵PE⊥DM,∴PE∥AB,∴△PDE∽△ADM,∴SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(4)解:如圖,當(dāng)點(diǎn)M、SKIPIF1<0、C三點(diǎn)共線時(shí),且點(diǎn)SKIPIF1<0位于M、C之間時(shí),此時(shí)點(diǎn)P在AD上,連接AA′,A′B,過點(diǎn)P作PF⊥AB于點(diǎn)F,過點(diǎn)A′作A′G⊥AB于點(diǎn)G,則AA′⊥PM,∵AB為直徑,∴∠A=90°,即AA′⊥A′B,∴PM∥A′B,∴∠PMF=∠ABA′,過點(diǎn)C作CN⊥AB交AB延長線于點(diǎn)N,在SKIPIF1<0中,AB∥DC,∵DM⊥AB,∴DM∥CN,∴四邊形CDMN為平行四邊形,∴CN=DM=3,MN=CD=4,∴CM=5,∴SKIPIF1<0,∵SKIPIF1<0M=2,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即PF=3FM,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即AF=2FM,∵AM=2,∴SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0;如圖,當(dāng)點(diǎn)SKIPIF1<0(SKIPIF1<0)位于CM的延長線上時(shí),此時(shí)點(diǎn)P在BD上,SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)G′,則SKIPIF1<0,取SKIPIF1<0的中點(diǎn)H,則點(diǎn)M、P、H三點(diǎn)共線,過點(diǎn)H作HK⊥AB于點(diǎn)K,過點(diǎn)P作PT⊥AB于點(diǎn)T,同理:SKIPIF1<0,∵HK⊥AB,SKIPIF1<0,∴HK∥A′′G′,∴SKIPIF1<0,∵點(diǎn)H是SKIPIF1<0的中點(diǎn),∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即MT=3PT,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵M(jìn)T+BT=BM=2,∴SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0;綜上所述,t的值為SKIPIF1<0或SKIPIF1<0.本題主要考查了四邊形的綜合題,熟練掌握平行四邊形的性質(zhì),圓的基本性質(zhì),相似三角形的判定和性質(zhì),解直角三角形,根據(jù)題意得到點(diǎn)SKIPIF1<0的運(yùn)動(dòng)軌跡是解題的關(guān)鍵,是中考的壓軸題.(2022·內(nèi)蒙古通遼·統(tǒng)考中考真題)已知點(diǎn)SKIPIF1<0在正方形SKIPIF1<0的對(duì)角線SKIPIF1<0上,正方形SKIPIF1<0與正方形SKIPIF1<0有公共點(diǎn)SKIPIF1<0.(1)如圖1,當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0在SKIPIF1<0上,求SKIPIF1<0的值為多少;(2)將正方形SKIPIF1<0繞SKIPIF1<0點(diǎn)逆時(shí)針方向旋轉(zhuǎn)SKIPIF1<0,如圖2,求:SKIPIF1<0的值為多少;(3)SKIPIF1<0,SKIPIF1<0,將正方形SKIPIF1<0繞SKIPIF1<0逆時(shí)針方向旋轉(zhuǎn)SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線時(shí),請(qǐng)直接寫出SKIPIF1<0的長度.(1)根據(jù)題意可得SKIPIF1<0,根據(jù)平行線分線段成比例即可求解;(2)根據(jù)(1)的結(jié)論,可得SKIPIF1<0,根據(jù)旋轉(zhuǎn)的性質(zhì)可得SKIPIF1<0,進(jìn)而證明SKIPIF1<0,根據(jù)相似三角形的性質(zhì)即可求解;(3)分兩種情況畫出圖形,證明△ADG∽△ACE,根據(jù)相似三角形的判定和性質(zhì)以及勾股定理即可得出答案.【答案】(1)2(2)SKIPIF1<0(3)SKIPIF1<0或SKIPIF1<0【詳解】(1)解:SKIPIF1<0正方形SKIPIF1<0與正方形SKIPIF1<0有公共點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0四邊形SKIPIF1<0是正方形SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)解:如圖,連接SKIPIF1<0,SKIPIF1<0正方形SKIPIF1<0繞SKIPIF1<0點(diǎn)逆時(shí)針方向旋轉(zhuǎn)SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,(3)解:①如圖,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線,SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,由(2)可知SKIPIF1<0,

SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0.②如圖:由(2)知△ADG∽△ACE,∴SKIPIF1<0,∴DG=SKIPIF1<0CE,∵四邊形ABCD是正方形,∴AD=BC=8SKIPIF1<0,AC=SKIPIF1<0,∵AG=SKIPIF1<0AD,∴AG=SKIPIF1<0AD=8,∵四邊形AFEG是正方形,∴∠AGE=90°,GE=AG=8,∵C,G,E三點(diǎn)共線.∴∠AGC=90°∴CG=SKIPIF1<0,∴CE=CG+EG=8SKIPIF1<0+8,∴DG=SKIPIF1<0CE=SKIPIF1<0.綜上,當(dāng)C,G,E三點(diǎn)共線時(shí),DG的長度為SKIPIF1<0或SKIPIF1<0.本題考查了平行線分線段成比例,相似三角形的性質(zhì)與判定,正方形的性質(zhì),勾股定理,旋轉(zhuǎn)的性質(zhì),綜合運(yùn)用以上知識(shí)是解題的關(guān)鍵.1.(2022·四川成都·成都市樹德實(shí)驗(yàn)中學(xué)校考模擬)在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0為線段SKIPIF1<0上一動(dòng)點(diǎn)(點(diǎn)SKIPIF1<0不與SKIPIF1<0、SKIPIF1<0重合),連接SKIPIF1<0,分別以SKIPIF1<0,SKIPIF1<0為斜邊向右側(cè)作等腰直角三角形SKIPIF1<0和等腰直角三角形SKIPIF1<0,連接SKIPIF1<0.(1)當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0的外部時(shí),求證:SKIPIF1<0∽SKIPIF1<0;(2)如圖SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線時(shí),求SKIPIF1<0的面積;(3)如圖SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0的延長線上時(shí),其它條件不變,連接SKIPIF1<0,若SKIPIF1<0,求SKIPIF1<0的長.【答案】(1)見解析;(2)SKIPIF1<0;(3)SKIPIF1<0【分析】(1)根據(jù)等腰直角三角形的性質(zhì)和相似三角形的判定解答即可;(2)根據(jù)相似三角形的性質(zhì)和三角函數(shù)以及勾股定理解答即可;(3)過C作SKIPIF1<0于點(diǎn)N,過A作SKIPIF1<0于點(diǎn)M,根據(jù)相似三角形的性質(zhì)和三角函數(shù)以及勾股定理解答即可.【詳解】(1)證明:∵SKIPIF1<0和SKIPIF1<0是等腰直角三角形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在RtSKIPIF1<0中,SKIPIF1<0,在RtSKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(2)∵D,F(xiàn),E三點(diǎn)共線,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,過點(diǎn)A作SKIPIF1<0于點(diǎn)M,如圖SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,在RtSKIPIF1<0中,SKIPIF1<0,在RtSKIPIF1<0中SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在RtSKIPIF1<0中,由勾股定理得:SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(3)過C作SKIPIF1<0于點(diǎn)N,過A作SKIPIF1<0于點(diǎn)M,如圖SKIPIF1<0,由(2)可得:SKIPIF1<0,在RtSKIPIF1<0中,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在RtSKIPIF1<0中,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,在RtSKIPIF1<0中,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.2.(2022·四川成都·??既#┰诰匦蜸KIPIF1<0中,點(diǎn)E為射線SKIPIF1<0上一動(dòng)點(diǎn),連接SKIPIF1<0.(1)當(dāng)點(diǎn)E在SKIPIF1<0邊上時(shí),將SKIPIF1<0沿SKIPIF1<0翻折,使點(diǎn)B恰好落在對(duì)角線SKIPIF1<0上點(diǎn)F處,SKIPIF1<0交SKIPIF1<0于點(diǎn)G.①如圖1,若SKIPIF1<0,求SKIPIF1<0的度數(shù);②如圖2,當(dāng)SKIPIF1<0,且SKIPIF1<0時(shí),求SKIPIF1<0的長.(2)在②所得矩形SKIPIF1<0中,將矩形SKIPIF1<0沿SKIPIF1<0進(jìn)行翻折,點(diǎn)C的對(duì)應(yīng)點(diǎn)為SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0三點(diǎn)共線時(shí),求SKIPIF1<0的長.【答案】(1)①SKIPIF1<0,②SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0【分析】(1)①由矩形的性質(zhì)和銳角三角函數(shù)定義得SKIPIF1<0,再由折疊的性質(zhì)得SKIPIF1<0,則SKIPIF1<0是等邊三角形,即可得出結(jié)論;②由折疊的性質(zhì)得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,再證SKIPIF1<0,得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,然后由射影定理得SKIPIF1<0,即SKIPIF1<0,求出SKIPIF1<0,即可解決問題;(2)分兩種情況,a、證SKIPIF1<0,得SKIPIF1<0,再由勾股定理得SKIPIF1<0,即可解決問題;b、證SKIPIF1<0,得SKIPIF1<0,再由勾股定理等SKIPIF1<0,即可得出結(jié)論.【詳解】(1)解:①∵四邊形SKIPIF1<0是矩形,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,由折疊的性質(zhì)得:SKIPIF1<0,∴SKIPIF1<0是等邊三角形,∴SKIPIF1<0,∴SKIPIF1<0;②由折疊的性質(zhì)得:SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵四邊形SKIPIF1<0是矩形,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0(射影定理),即SKIPIF1<0,解得:SKIPIF1<0(負(fù)值已舍去),∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0的長為SKIPIF1<0;(2)當(dāng)點(diǎn)SKIPIF1<0三點(diǎn)共線時(shí),分兩種情況:a、如圖3,由②可知,SKIPIF1<0,∵四邊形SKIPIF1<0是矩形,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,由折疊的性質(zhì)得:SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;b、如圖4,由折疊的性質(zhì)得:SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,由勾股定理得:SKIPIF1<0,∴SKIPIF1<0;綜上所述,BE的長為SKIPIF1<0或SKIPIF1<0.3.(2022·福建福州·福建省福州第十九中學(xué)??寄M)如圖,在等腰Rt△ABC中,SKIPIF1<0,SKIPIF1<0,點(diǎn)D,E分別在邊AB,BC上,將線段ED繞點(diǎn)E按逆時(shí)針方向旋轉(zhuǎn)90°得到EF,連接AF,DF,點(diǎn)G是AF的中點(diǎn),連接DG.(1)當(dāng)點(diǎn)D是AB中點(diǎn)時(shí),①如圖1,點(diǎn)E與點(diǎn)C重合,求證:D,G,C三點(diǎn)共線.②如圖2,若SKIPIF1<0,求DG的長.(2)如圖3,若SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),求CE的長.【答案】(1)①見解析;②SKIPIF1<0;(2)SKIPIF1<0【分析】(1)①利用三角形全等,證明SKIPIF1<0即可.②如圖2,作SKIPIF1<0于點(diǎn)T,SKIPIF1<0于H.證明SKIPIF1<0,用三角形中位線定理求解即可.(2)當(dāng)SKIPIF1<0時(shí),F(xiàn),E,G,A共線,作SKIPIF1<0于點(diǎn)T,SKIPIF1<0于H.運(yùn)用平行線分線段成比例定理,列式求解即可.【詳解】(1)①證明:如圖1中,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0∵點(diǎn)G是AF的中點(diǎn),∴SKIPIF1<0,

∴SKIPIF1<0,∴SKIPIF1<0,

∵SKIPIF1<0,∴SKIPIF1<0,

∴C,G,D三點(diǎn)共線.②解:如圖2中,作SKIPIF1<0于點(diǎn)T,SKIPIF1<0于H.由題意:SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0

∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(2)解:如圖3—1中,當(dāng)SKIPIF1<0時(shí),F(xiàn),E,G,A共線,作SKIPIF1<0于點(diǎn)T,SKIPIF1<0于H.設(shè)SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,整理得:SKIPIF1<0解得SKIPIF1<0.4.(2022·河北張家口·一模)如圖1,在SKIPIF1<0中,SKIPIF1<0,點(diǎn)A,D是射線SKIPIF1<0上的點(diǎn),以SKIPIF1<0為一邊在SKIPIF1<0內(nèi)作矩形SKIPIF1<0,點(diǎn)C在SKIPIF1<0邊上.(1)當(dāng)點(diǎn)B在SKIPIF1<0邊上時(shí),求SKIPIF1<0的長;(2)如圖2,若A,B,O三點(diǎn)共線,且SKIPIF1<0是以SKIPIF1<0為腰的等腰三角形,①SKIPIF1<0__________;②求SKIPIF1<0的長;(3)在圖2的基礎(chǔ)上,點(diǎn)A向右移動(dòng)得到圖3連接SKIPIF1<0,若SKIPIF1<0和SKIPIF1<0相似,直接寫出SKIPIF1<0的長.(注:三角形全等可視為三角形相似的特殊情況)【答案】(1)SKIPIF1<0(2)①3∶4∶5;②SKIPIF1<0或SKIPIF1<0(3)2或SKIPIF1<0【分析】(1)利用正切函數(shù)計(jì)算即可.(2)①證明∠BOC=∠P,結(jié)合SKIPIF1<0,利用勾股定理計(jì)算OC的長度,最后計(jì)算比值即可.②分AO=OC,AO=AC兩種情形,運(yùn)用勾股定理,三角函數(shù)計(jì)算即可.(3)分SKIPIF1<0和SKIPIF1<0相似和全等兩種情形求解.【詳解】(1)如圖,當(dāng)點(diǎn)B在SKIPIF1<0邊上時(shí),∵四邊形ABCD是矩形,∴∠PAB=90°,∴SKIPIF1<0,解得PA=SKIPIF1<0.(2)①∵四邊形ABCD是矩形,∴∠PAB=∠OBC=90°,∵∠POQ=90°,∴∠BOC=∠P,∴SKIPIF1<0,設(shè)BC=4k,則OB=3k,∴OC=SKIPIF1<0,∴OB:BC:OC=3k:4k:5k=3:4:5.②∵SKIPIF1<0,不妨設(shè)OQ=4k,則OP=3k,PQ=SKIPIF1<0,當(dāng)OA=OC時(shí),∵四邊形ABCD是矩形,∴∠PAB=∠OBC=∠CDQ=90°,∴OA=SKIPIF1<0=OC,CD∥AO,∴CQ=OQ-OC=SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,解得k=SKIPIF1<0,∴PO=3k=SKIPIF1<0,OA=SKIPIF1<0=5,∴PA=SKIPIF1<0,當(dāng)OA=AC時(shí),設(shè)OA=AC=x,∵AB=2,∴x>2,∴OB=AO-AB=x-2,由上面解答,得BC=SKIPIF1<0,∵四邊形ABCD是矩形,∴∠PAB=∠OBC=∠CDQ=90°,∴SKIPIF1<0,∴SKIPIF1<0,解得x=SKIPIF1<0或x=2(舍去),∴AO=SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0,綜上所述,PA的長為SKIPIF1<0或SKIPIF1<0.(3)當(dāng)△AOB≌△COB時(shí),故AB=BC,∵四邊形ABCD是矩形,∴四邊形ABCD是正方形,∵AB=2,∴AD=AB=2;設(shè)SKIPIF1<0則OC=5x,SKIPIF1<0,∵△BAO∽△BOC時(shí),∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0,整理,得SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,解得y=3x或y=4x(舍去),∴SKIPIF1<0變形為SKIPIF1<0,解得x=SKIPIF1<0或x=0(舍去),故BC=SKIPIF1<0,∵四邊形ABCD是矩形,∴AD=BC=SKIPIF1<0;故AD的長為2或SKIPIF1<0.5.(2022·山東煙臺(tái)·統(tǒng)考一模)在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D在邊BC上,BC=3BD,將線段DB繞點(diǎn)D順時(shí)針旋轉(zhuǎn)至DE,記旋轉(zhuǎn)角為α(0°<α<180°),連接BE,CE,以CE為斜邊在其一側(cè)作等腰直角三角形CEF,連接AF.(1)如圖1,求證:△CAF∽△CBE,并求出SKIPIF1<0的值;(2)如圖2,當(dāng)B,E,F(xiàn)三點(diǎn)共線時(shí),連接AE,請(qǐng)判斷四邊形AECF的形狀,并說明理由.【答案】(1)證明見解析,SKIPIF1<0SKIPIF1<0(2)四邊形AECF是平行四邊形,理由見解析【分析】(1)由題意先證明∠ACF=∠BCE和SKIPIF1<0,進(jìn)而證明出△CAF∽△CBE,可以利用相似比得出SKIPIF1<0的值;(2)根據(jù)題意過點(diǎn)D作DG⊥BF于點(diǎn)G,得出△BDG∽△BCF,進(jìn)而分析求證四邊形AECF是平行四邊形.【詳解】(1)解:∵△CEF是等腰直角三角形,∴∠ECF=45°,SKIPIF1<0,∵在△ABC中,∠BAC=90°,AB=AC,∴∠BCA=45°,SKIP

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論