版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
#利用大語言模型
促進綜合圖學(xué)習(xí)能力02
大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述01
為什么應(yīng)用大語言模型進行圖學(xué)習(xí)
03
大語言模型促進跨領(lǐng)域跨任務(wù)的統(tǒng)一圖學(xué)習(xí)04
潛在研究方向目錄#01為什么應(yīng)用大語言模型進行圖學(xué)習(xí)為什么應(yīng)用大語言模型進行圖學(xué)習(xí)大語言模型的能力圖數(shù)據(jù)的特征為什么應(yīng)用大語言模型進行圖學(xué)習(xí)大語言模型的能力LLMs
have
demonstrated
their
strong
text
encoding/decoding
ability.Zhao
W
X,
Zhou
K,
Li
J,
et
al.
A
survey
of
large
language
models[J].
arXiv
preprint
arXiv:2303.18223,2023.為什么應(yīng)用大語言模型進行圖學(xué)習(xí)大語言模型的能力LLMs
have
shown
newly
found
emergent
ability
(e.g.,
reasoning).Wei
J,
Wang
X,
Schuurmans
D,
et
al.
Chain-of-thought
prompting
elicits
reasoning
in
largelanguage
models[J].
Advances
in
neural
information
processing
systems,
2022,
35:
24824-24837.為什么應(yīng)用大語言模型進行圖學(xué)習(xí)圖數(shù)據(jù)的特征In
real
world,
text
and
graph
usually
appears
simultaneously.Text
data
are
associated
with
rich
structure
information
in
the
form
of
graphs.Graph
data
are
captioned
with
rich
textual
information.#02大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述不同的圖數(shù)據(jù)應(yīng)用場景圖任務(wù)中大語言模型的不同角色不同的圖數(shù)據(jù)應(yīng)用場景Jin
B,
Liu
G,
Han
C,
et
al.
Large
language
models
on
graphs:
A
comprehensive
survey[J].
arXivpreprintarXiv:2312.02783,
2023.大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述不同的圖數(shù)據(jù)應(yīng)用場景:Pure
GraphDefinition:
Graph
with
no
text
information
or
no
semantically
rich
text
information.
eg.
traffic
graphsor
power
transmission
graph.Problems
on
Pure
Graphs:graph
reasoning
tasks
likeconnectivityshortestpathsubgraph
matchinglogical
rule
induction…Wang
H,
Feng
S,
He
T,
et
al.
Can
language
models
solve
graph
problems
in
natural
language?[J].Advances
in
Neural
Information
Processing
Systems,
2024,
36.大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述不同的圖數(shù)據(jù)應(yīng)用場景:Pure
GraphGraph
with
no
text
information
or
no
semantically
rich
text
information.
eg.
traffic
graphs
or
powertransmission
graph.Wang
H,
Feng
S,
He
T,
et
al.
Can
language
models
solve
graph
problems
in
natural
language?[J].Advances
in
Neural
Information
Processing
Systems,
2024,
36.大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述不同的圖數(shù)據(jù)應(yīng)用場景:Text-Paired
GraphSeidl,
P.,
Vall,
A.,
Hochreiter,
S.,
&
Klambauer,
G.,
Enhancing
activity
prediction
models
in
drug
discoverywith
the
ability
to
understand
human
language,
in
ICML,
2023大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述不同的圖數(shù)據(jù)應(yīng)用場景:Text-Paired
GraphSeidl,
P.,
Vall,
A.,
Hochreiter,
S.,
&
Klambauer,
G.,
Enhancing
activity
prediction
models
in
drug
discoverywith
the
ability
to
understand
human
language,
in
ICML,
2023大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述不同的圖數(shù)據(jù)應(yīng)用場景:Text-Attributed
GraphRuosong
Ye,
Caiqi
Zhang,
Runhui
Wang,
Shuyuan
Xu,
and
Yongfeng
Zhang.
2024.
Language
is
All
a
Graph
Needs.
In
Findings
of
the
Association
for
Computational
Linguistics:
EACL
2024,
pages
1955–1973,
St.
Julian’s,
Malta.
Association
for
Computational
Linguistics.大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述不同的圖數(shù)據(jù)應(yīng)用場景:Text-Attributed
GraphRuosong
Ye,
Caiqi
Zhang,
Runhui
Wang,
Shuyuan
Xu,
and
Yongfeng
Zhang.
2024.
Language
is
All
a
Graph
Needs.
In
Findings
of
the
Association
for
Computational
Linguistics:
EACL
2024,
pages
1955–1973,
St.
Julian’s,
Malta.
Association
for
Computational
Linguistics.大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述圖任務(wù)中大語言模型的不同角色LLM
as
Enhancer/EncoderLLM
as
PredictorLLM
as
Aligner大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述Eembedding-based圖任務(wù)中大語言模型的不同角色:LLM
as
Enhancer/EncoderExplanation-based大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述LLM
as
Enhancer/Encoder:
Explanation-basedICLR’24Basically,
using
T
andA,to
generate
P
and
E,then
use
T,
A,
P,
Easenriched
text
feature.He
X,
Bresson
X,
Laurent
T,
et
al.
Explanations
as
features:
Llm-based
features
for
text-attributed
graphs[J].arXiv
preprint
arXiv:2305.19523,
2023.大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述LLM
as
Enhancer/Encoder:
Explanation-basedHe
X,
Bresson
X,
Laurent
T,
et
al.
Explanations
as
features:
Llm-based
features
for
text-attributed
graphs[J].arXiv
preprint
arXiv:2305.19523,
2023.大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述LLM
as
Enhancer/Encoder:
Embedding-basedObservation:Fine-tune-based
LLMsmay
fail
at
low
labelingrate
settings.Chen,
Z.,
Mao,
H.,
Li,
H.,
Jin,
W.,
Wen,
H.,
Wei,
X.,
Wang,
S.,
Yin,
D.,
Fan,
W.,
Liu,
H.,
&
Tang,
J.
(2024).
Exploring
thePotential
of
Large
Language
Models
(LLMs)
in
Learning
on
Graphs
(arXiv:2307.03393).
arXiv./abs/2307.03393Low
label
ratioHigh
label
ratio大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述LLM
as
Enhancer/Encoder:
Embedding-basedObservation:Under
embedding-basedstructure,
the
combination
ofdeep
sentence
embedding
withGNNs
makes
a
strong
baseline.Low
label
ratioChen,
Z.,
Mao,
H.,
Li,
H.,
Jin,
W.,
Wen,
H.,
Wei,
X.,
Wang,
S.,
Yin,
D.,
Fan,
W.,
Liu,
H.,
&
Tang,
J.
(2024).
Exploring
thePotential
of
Large
Language
Models
(LLMs)
in
Learning
on
Graphs
(arXiv:2307.03393).
arXiv./abs/2307.03393High
label
ratio大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述圖任務(wù)中大語言模型的不同角色:LLM
as
PredictorFlatten-basedGNN-based大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述LLM
asPredictor:
Flatten-basedGuo,
J.,
Du,
L.,
&
Liu,
H.
(2023).
Gpt4graph:
Can
large
language
models
understand
graphstructured
data?
an
empirical
evaluation
and
benchmarking.
arXiv
preprint
arXiv:2305.15066.大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述LLM
asPredictor:
Flatten-basedGuo,
J.,
Du,
L.,
&
Liu,
H.
(2023).
Gpt4graph:
Can
large
language
models
understand
graphstructured
data?
an
empirical
evaluation
and
benchmarking.
arXiv
preprint
arXiv:2305.15066.大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述LLM
as
Predictor:
GNN-basedTang,
Jiabin,
et
al.
"Graphgpt:
Graph
instruction
tuning
for
large
language
models."
arXiv
preprintarXiv:2310.13023
(2023).大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述LLM
as
Predictor:
GNN-basedTang,
Jiabin,
et
al.
"Graphgpt:
Graph
instruction
tuning
for
large
language
models."
arXiv
preprintarXiv:2310.13023
(2023).大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述圖任務(wù)中大語言模型的不同角色:LLM
as
Aligner大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述LLM
as
Aligner:ContrastiveWen,
Z.,
&
Fang,
Y.
(2023).
Prompt
tuning
on
graph-augmented
low-resource
textclassification.
arXiv
preprint
arXiv:2307.10230.大語言模型進行圖學(xué)習(xí)的現(xiàn)狀概述LLM
as
Aligner:DistillationMavromatis,
Costas,
et
al.
"Train
your
own
gnn
teacher:
Graph-aware
distillation
on
textualgraphs."
Joint
European
Conference
on
Machine
Learning
and
Knowledge
Discovery
in
Databases.Cham:
Springer
Nature
Switzerland,
2023.#03大語言模型促進跨領(lǐng)域跨任務(wù)的統(tǒng)一圖學(xué)習(xí)大語言模型促進跨領(lǐng)域跨任務(wù)的統(tǒng)一圖學(xué)習(xí)“Cross
Domain”
before
LLMsCross
Domain
Graph
Learning
with
LLM大語言模型促進跨領(lǐng)域跨任務(wù)的統(tǒng)一圖學(xué)習(xí)“Cross
Domain”
before
LLMsKDD’20:
“We
design
Graph
Contrastive
CodingQiu,
Jiezhong,
et
al.
"Gcc:
Graph
contrastive
coding
for
graph
neural
network
pre-training."
Proceedings
of
the
26th
ACM
SIGKDD
international
conference
on
knowledge
discovery&
data
mining.
2020.(GCC)—a
self-supervised
graph
neural
network
pre-training
framework—to
capture
the
universal
networktopological
properties
across
multiple
networks.”Limitation:
the
node
features
are
notthe
same,
among
graphs
fromdifferent
domain.大語言模型促進跨領(lǐng)域跨任務(wù)的統(tǒng)一圖學(xué)習(xí)Cross
Domain
Graph
Learning
with
LLMOne
for
all:Towards
trainingone
graphmodel
for
allclassificationtasksLiu,
Hao,
et
al.
"One
for
all:
Towards
training
one
graph
model
for
all
classification
tasks."
arXivpreprint
arXiv:2310.00149
(2023).大語言模型促進跨領(lǐng)域跨任務(wù)的統(tǒng)一圖學(xué)習(xí)Cross
Domain
Graph
Learning
with
LLMLiu,
Hao,
et
al.
"One
for
all:
Towards
training
one
graph
model
for
all
classification
tasks."
arXivpreprint
arXiv:2310.00149
(2023).大語言模型促進跨領(lǐng)域跨任務(wù)的統(tǒng)一圖學(xué)習(xí)Cross
Domain
Graph
Learning
with
LLMOFA
successfully
enableda
single
graph
model
to
be
effective
onall
graph
datasets
across
differentdomains
as
OFA-joint
performs
well
onall
datasets.Further,
we
can
see
that
OFA-jointachieves
better
results
on
most
of
thedatasets
compared
toOFA-ind.
Thismay
indicate
that
by
leveraging
thetext
feature,
the
knowledge
learnedfrom
one
domain
can
be
useful
for
thelearning
of
other
domains.Liu,
Hao,
et
al.
"One
for
all:
Towards
training
one
graph
model
for
all
classification
tasks."
arXivpreprint
arXiv:2310.00149
(2023).大語言模型促進跨領(lǐng)域跨任務(wù)的統(tǒng)一圖學(xué)習(xí)Cross
Domain
Graph
Learning
with
LLMOverview
of
UniGraph
framework.
In
pre-training,
we
employ
a
self-supervised
approach,
leveragingTAGs
to
unify
diverse
graph
data.
This
phase
involves
a
cascaded
architecture
combining
LMs
andGNNs.He,
Yufei,
and
Bryan
Hooi.
"UniGraph:
Learning
a
Cross-Domain
Graph
Foundation
Model
FromNatural
Language."
arXiv
preprint
arXiv:2402.13630
(2024).大語言模型促進跨領(lǐng)域跨任務(wù)的統(tǒng)一圖學(xué)習(xí)Cross
Domain
Graph
Learning
with
LLMWe
can
observe
thatpre-training
ongraphs
from
the
same
domain
enhancesthe
performance
of
downstream
tasks.This
suggests
that
in-domain
transferremains
simpler
than
cross-domaintransfer.He,
Yufei,
and
Bryan
Hooi.
"UniGraph:
Learning
a
Cross-Domain
Graph
Foundation
Model
FromNatural
Language."
arXiv
preprint
arXiv:2402.13630
(2024).Experiment
results
in
few-shot
transfer.大語言模型促進跨領(lǐng)域跨任務(wù)的統(tǒng)一圖學(xué)習(xí)Cross
Domain
Graph
Learning
with
LLMTan,
Yanchao,
et
al.
"MuseGraph:
Graph-oriented
Instruction
Tuning
of
Large
Language
Modelsfor
Generic
Graph
Mining."
arXiv
preprint
arXiv:2403.04780
(2024).大語言模型促進跨領(lǐng)域跨任務(wù)的統(tǒng)一圖學(xué)習(xí)Cross
Domain
Graph
Learning
with
LLMTan,
Yanchao,
et
al.
"MuseGraph:
Graph-oriented
Instruction
Tuning
of
Large
Language
Modelsfor
Generic
Graph
Mining."
arXiv
preprint
arXiv:2403.04780
(2024).#04潛在研究方向潛在研究方向What
LLMs
truly
learned
from
GraphsObservation
1:LLMs
interpret
inputs
more
as
contextual
paragraphs
than
as
graphs
with
topologicalstructures.
Neither
linearizing
nor
rewiring
ego-graph
has
significant
impact
on
theclassification
performance
of
LLMs.Linearize
ego-graph:
We
create
a
linearized
version
of
the
graph-structured
prompts
by
onlykeeping
all
neighbors’
text
attributes
in
the
prompts.Huang,
Jin,
et
al.
"Can
llms
effectively
leverage
graph
structural
information:
when
and
why."
arXivpreprint
arXiv:2309.16595
(2023).潛在研究方向What
LLMs
truly
learned
from
GraphsObservation
1:LLMs
interpret
inputs
more
as
contextual
paragraphs
than
as
graphs
with
topologicalstructures.
Neither
linearizing
nor
rewiring
ego-graph
has
significant
impact
on
theclassification
performance
of
LLMs.Rewire
ego-graph:We
randomly
rewire
theego-graph
by
differentstrategies.
Then
wecompare
theperformance
of
MPNNsand
LLMs
under
eachstrategy.Huang,
Jin,
et
al.
"Can
llms
effectively
leverage
graph
structural
information:
when
and
why."
arXivpreprint
arXiv:2309.16595
(2023).潛在研究方向What
LLMs
truly
learned
from
GraphsObservation
2:LLMs
benefit
from
structural
information
only
when
the
neighborhood
is
homophilous,which
means
the
neighbors
contain
phrases
related
to
the
groundtruth
label
of
the
targetnode.Huang,
Jin,
et
al.
"Can
llms
effectively
leverage
graph
structural
information:
when
and
why."
arXivpreprint
arXiv:2309.16595
(2023).潛在研究方向What
LLMs
truly
learned
from
GraphsObservation
3:LLMs
benefit
from
structural
information
when
the
target
node
does
not
contain
enoughphrases
for
the
model
to
make
reasonable
prediction.Huang,
Jin,
et
al.
"Can
llms
effectively
leverage
graph
structural
information:
when
and
why."
arXivpreprint
arXiv:2309.16595
(2023).潛在研究方向Truly
“Generative”
Cross
Domain
LLM-based
Graph
LearningIs
there
universal
structure
features
that
benefit
for
graph
learningof
graph
from
different
domain?How
can
these
complex
topological
features,
instead
of
the
textcontext,
be
really
captured
by
LLMs?致謝Large
Language
Models
on
Graphs:
A
Comprehensive
Survey致謝言鵬韋浙江大學(xué)信息資源管理系2021級博士研究生阿里巴巴通義實驗室實習(xí)生ReferencesZhao
W
X,
Zhou
K,
Li
J,
et
al.
A
survey
of
large
language
models[J].
arXiv
preprint
arXiv:2303.18223,
2023.Huang,
Jin,
et
al.
"Can
llms
effectively
leverage
graph
structural
information:
when
and
why."
arXiv
preprintarXiv:2309.16595
(2023).Tan,
Yanchao,
et
al.
"MuseGraph:
Graph-oriented
Instruction
Tuning
of
Large
Language
Models
for
Generic
GraphMining."
arXiv
preprint
arXiv:2403.04780(2024).He,
Yufei,
and
Bryan
Hooi.
"UniGraph:
Learning
a
Cross-Domain
Graph
Foundation
Model
From
Natural
Language."
arXivpreprint
arXiv:2402.13630
(2024).Liu,
Hao,
et
al.
"One
for
all:
Towards
training
one
graph
model
for
all
classification
tasks."
arXiv
preprintarXiv:2310.00149
(2023).Qiu,
Jiezhong,
et
al.
"Gcc:
Graph
contrastive
coding
for
graph
neural
network
pre-training."
Proceedings
of
the
26th
ACMSIGKDD
international
conference
on
knowledge
discovery
&
data
mining.
2020.Mavromatis,
Costas,
et
al.
"Train
your
own
gnn
teacher:
Graph-aware
distillation
on
textual
graphs."
Joint
European
Conferenceon
Machine
Learning
and
Knowledge
Discovery
in
Databases.
Cham:
Springer
Nature
Switzerland,
2023.Wen,
Z.,
&
Fang,
Y.
(2023).
Prompt
tuning
on
graph-augmented
low-resource
text
classification.
arXiv
preprintarXiv:2307.10230.Tang,
Jiabin,
et
al.
"Graphgpt:
Graph
instruction
tuning
for
large
language
models."
arXiv
preprint
arXiv:2310.13023
(2023).Guo,
J.,
Du,
L.,
&
Liu,
H.
(2023).
Gpt4graph:
Can
large
language
models
understand
graph
structured
data?
an
empiricalevaluation
and
benchmarking.
arXiv
preprint
arXiv:2305.15066.ReferencesXie,
Han,
et
al.
"Graph-aware
language
model
pre-training
on
a
large
graph
corpus
can
help
multiple
graphapplications."
Pro
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西安信息職業(yè)大學(xué)《創(chuàng)新創(chuàng)業(yè)學(xué)通論》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五版企業(yè)股權(quán)收益權(quán)轉(zhuǎn)讓居間協(xié)議書模板3篇
- 2024鐵路電氣化工程安全施工協(xié)議及質(zhì)量監(jiān)控3篇
- 二零二五年度物業(yè)管理服務(wù)合同:視頻監(jiān)控系統(tǒng)維護與升級
- 2024版廣告設(shè)計與推廣合同
- 濰坊理工學(xué)院《半導(dǎo)體元件》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024版物流服務(wù)合同認定條件與服務(wù)內(nèi)容規(guī)定
- 2024版石油買賣合同
- 四川文化傳媒職業(yè)學(xué)院《招貼設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024版廣西勞動合同
- 工作證明模板下載免費
- 顛茄流浸膏實驗方案及總結(jié)
- 投標人情況表
- GB/T 34241-2017卷式聚酰胺復(fù)合反滲透膜元件
- GB/T 12494-1990食品機械專用白油
- 運輸供應(yīng)商年度評價表
- 北京語言大學(xué)保衛(wèi)處管理崗位工作人員招考聘用【共500題附答案解析】模擬試卷
- 肺癌的診治指南課件
- 人教版七年級下冊數(shù)學(xué)全冊完整版課件
- 商場裝修改造施工組織設(shè)計
- 統(tǒng)編版一年級語文上冊 第5單元教材解讀 PPT
評論
0/150
提交評論