版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023屆重慶市開州區(qū)開州中學高三5月月考(數(shù)學試題文)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.2.已知正四面體外接球的體積為,則這個四面體的表面積為()A. B. C. D.3.設(shè),為非零向量,則“存在正數(shù),使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件4.在中,,則()A. B. C. D.5.已知是虛數(shù)單位,則()A. B. C. D.6.設(shè),是雙曲線的左,右焦點,是坐標原點,過點作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.7.在展開式中的常數(shù)項為A.1 B.2 C.3 D.78.某校為提高新入聘教師的教學水平,實行“老帶新”的師徒結(jié)對指導形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導,現(xiàn)選出3位老教師負責指導5位新入聘教師,則不同的師徒結(jié)對方式共有()種.A.360 B.240 C.150 D.1209.已知角的終邊經(jīng)過點,則A. B.C. D.10.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數(shù)為()A.1 B.2C.3 D.411.羽毛球混合雙打比賽每隊由一男一女兩名運動員組成.某班級從名男生,,和名女生,,中各隨機選出兩名,把選出的人隨機分成兩隊進行羽毛球混合雙打比賽,則和兩人組成一隊參加比賽的概率為()A. B. C. D.12.函數(shù)的大致圖象為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列{an}的前n項和為Sn,若a214.已知為拋物線:的焦點,過作兩條互相垂直的直線,,直線與交于、兩點,直線與交于、兩點,則的最小值為__________.15.已知向量,若向量與共線,則________.16.已知二項式的展開式中各項的二項式系數(shù)和為512,其展開式中第四項的系數(shù)__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)己知的內(nèi)角的對邊分別為.設(shè)(1)求的值;(2)若,且,求的值.18.(12分)已知函數(shù).(1)當時,求的單調(diào)區(qū)間;(2)若函數(shù)有兩個極值點,,且,為的導函數(shù),設(shè),求的取值范圍,并求取到最小值時所對應的的值.19.(12分)在平面直角坐標系中,已知向量,,其中.(1)求的值;(2)若,且,求的值.20.(12分)已知函數(shù).(1)若在上是減函數(shù),求實數(shù)的最大值;(2)若,求證:.21.(12分)設(shè)首項為1的正項數(shù)列{an}的前n項和為Sn,數(shù)列的前n項和為Tn,且,其中p為常數(shù).(1)求p的值;(2)求證:數(shù)列{an}為等比數(shù)列;(3)證明:“數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù)”的充要條件是“x=1,且y=2”.22.(10分)為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術(shù)支援,現(xiàn)對已選出的一組玉米的莖高進行統(tǒng)計,獲得莖葉圖如圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.(1)求出易倒伏玉米莖高的中位數(shù);(2)根據(jù)莖葉圖的數(shù)據(jù),完成下面的列聯(lián)表:抗倒伏易倒伏矮莖高莖(3)根據(jù)(2)中的列聯(lián)表,是否可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關(guān)?附:,0.0500.0100.0013.8416.63510.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
先利用最高點縱坐標求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結(jié)合0<φ,∴φ.∴.∴sin.故選:A.【點睛】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結(jié)合五點法作圖求解.屬于中檔題.2.B【解析】
設(shè)正四面體ABCD的外接球的半徑R,將該正四面體放入一個正方體內(nèi),使得每條棱恰好為正方體的面對角線,根據(jù)正方體和正四面體的外接球為同一個球計算出正方體的棱長,從而得出正四面體的棱長,最后可求出正四面體的表面積.【詳解】將正四面體ABCD放在一個正方體內(nèi),設(shè)正方體的棱長為a,如圖所示,設(shè)正四面體ABCD的外接球的半徑為R,則,得.因為正四面體ABCD的外接球和正方體的外接球是同一個球,則有,∴.而正四面體ABCD的每條棱長均為正方體的面對角線長,所以,正四面體ABCD的棱長為,因此,這個正四面體的表面積為.故選:B.【點睛】本題考查球的內(nèi)接多面體,解決這類問題就是找出合適的模型將球體的半徑與幾何體的一些幾何量聯(lián)系起來,考查計算能力,屬于中檔題.3.D【解析】
充分性中,由向量數(shù)乘的幾何意義得,再由數(shù)量積運算即可說明成立;必要性中,由數(shù)量積運算可得,不一定有正數(shù),使得,所以不成立,即可得答案.【詳解】充分性:若存在正數(shù),使得,則,,得證;必要性:若,則,不一定有正數(shù),使得,故不成立;所以是充分不必要條件故選:D【點睛】本題考查平面向量數(shù)量積的運算,向量數(shù)乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.4.A【解析】
先根據(jù)得到為的重心,從而,故可得,利用可得,故可計算的值.【詳解】因為所以為的重心,所以,所以,所以,因為,所以,故選A.【點睛】對于,一般地,如果為的重心,那么,反之,如果為平面上一點,且滿足,那么為的重心.5.B【解析】
根據(jù)復數(shù)的乘法運算法則,直接計算,即可得出結(jié)果.【詳解】.故選B【點睛】本題主要考查復數(shù)的乘法,熟記運算法則即可,屬于基礎(chǔ)題型.6.B【解析】
設(shè)過點作的垂線,其方程為,聯(lián)立方程,求得,,即,由,列出相應方程,求出離心率.【詳解】解:不妨設(shè)過點作的垂線,其方程為,由解得,,即,由,所以有,化簡得,所以離心率.故選:B.【點睛】本題主要考查雙曲線的概念、直線與直線的位置關(guān)系等基礎(chǔ)知識,考查運算求解、推理論證能力,屬于中檔題.7.D【解析】
求出展開項中的常數(shù)項及含的項,問題得解?!驹斀狻空归_項中的常數(shù)項及含的項分別為:,,所以展開式中的常數(shù)項為:.故選:D【點睛】本題主要考查了二項式定理中展開式的通項公式及轉(zhuǎn)化思想,考查計算能力,屬于基礎(chǔ)題。8.C【解析】
可分成兩類,一類是3個新教師與一個老教師結(jié)對,其他一新一老結(jié)對,第二類兩個老教師各帶兩個新教師,一個老教師帶一個新教師,分別計算后相加即可.【詳解】分成兩類,一類是3個新教師與同一個老教師結(jié)對,有種結(jié)對結(jié)對方式,第二類兩個老教師各帶兩個新教師,有.∴共有結(jié)對方式60+90=150種.故選:C.【點睛】本題考查排列組合的綜合應用.解題關(guān)鍵確定怎樣完成新老教師結(jié)對這個事情,是先分類還是先分步,確定方法后再計數(shù).本題中有一個平均分組問題.計數(shù)時容易出錯.兩組中每組中人數(shù)都是2,因此方法數(shù)為.9.D【解析】因為角的終邊經(jīng)過點,所以,則,即.故選D.10.D【解析】可以是共4個,選D.11.B【解析】
根據(jù)組合知識,計算出選出的人分成兩隊混合雙打的總數(shù)為,然后計算和分在一組的數(shù)目為,最后簡單計算,可得結(jié)果.【詳解】由題可知:分別從3名男生、3名女生中選2人:將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊混合雙打的總數(shù)為:和分在一組的數(shù)目為所以所求的概率為故選:B【點睛】本題考查排列組合的綜合應用,對平均分組的問題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細心計算,考驗分析能力,屬中檔題.12.A【解析】
因為,所以函數(shù)是偶函數(shù),排除B、D,又,排除C,故選A.二、填空題:本題共4小題,每小題5分,共20分。13.-2【解析】試題分析:∵a2考點:等比數(shù)列性質(zhì)及求和公式14.16.【解析】由題意可知拋物線的焦點,準線為設(shè)直線的解析式為∵直線互相垂直∴的斜率為與拋物線的方程聯(lián)立,消去得設(shè)點由跟與系數(shù)的關(guān)系得,同理∵根據(jù)拋物線的性質(zhì),拋物線上的點到焦點的距離等于到準線的距離∴,同理∴,當且僅當時取等號.故答案為16點睛:(1)與拋物線有關(guān)的最值問題,一般情況下都與拋物線的定義有關(guān).利用定義可將拋物線上的點到焦點的距離轉(zhuǎn)化為到準線的距離,可以使運算化繁為簡.“看到準線想焦點,看到焦點想準線”,這是解決拋物線焦點弦有關(guān)問題的重要途徑;(2)圓錐曲線中的最值問題,可利用基本不等式求解,但要注意不等式成立的條件.15.【解析】
計算得到,根據(jù)向量平行計算得到答案.【詳解】由題意可得,因為與共線,所以有,即,解得.故答案為:.【點睛】本題考查了根據(jù)向量平行求參數(shù),意在考查學生的計算能力.16.【解析】
先令可得其展開式各項系數(shù)的和,又由題意得,解得,進而可得其展開式的通項,即可得答案.【詳解】令,則有,解得,則二項式的展開式的通項為,令,則其展開式中的第4項的系數(shù)為,故答案為:【點睛】此題考查二項式定理的應用,解題時需要區(qū)分展開式中各項系數(shù)的和與各二項式系數(shù)和,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)由正弦定理將,轉(zhuǎn)化,即,由余弦定理求得,再由平方關(guān)系得再求解.(2)由,得,結(jié)合再求解.【詳解】(1)由正弦定理,得,即,則,而,又,解得,故.(2)因為,則,因為,故,故,解得,故,則.【點睛】本題考查正弦定理、余弦定理、三角形的面積公式,考查運算求解能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.18.(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)的取值范圍是;對應的的值為.【解析】
(1)當時,求的導數(shù)可得函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個極值點,,且,利用導函數(shù),可得的范圍,再表達,構(gòu)造新函數(shù)可求的取值范圍,從而可求取到最小值時所對應的的值.【詳解】(1)函數(shù)由條件得函數(shù)的定義域:,當時,,所以:,時,,當時,,當,時,,則函數(shù)的單調(diào)增區(qū)間為:,單調(diào)遞減區(qū)間為:,;(2)由條件得:,,由條件得有兩根:,,滿足,△,可得:或;由,可得:.,函數(shù)的對稱軸為,,所以:,;,可得:,,,則:,所以:;所以:,令,,,則,因為:時,,所以:在,上是單調(diào)遞減,在,上單調(diào)遞增,因為:,(1),,(1),所以,;即的取值范圍是:,;,所以有,則,;所以當取到最小值時所對應的的值為;【點睛】本題主要考查利用導數(shù)研究函數(shù)的極值和單調(diào)區(qū)間問題,考查利用導數(shù)求函數(shù)的最值,體現(xiàn)了轉(zhuǎn)化的思想方法,屬于難題.19.(1)(2).【解析】
(1)根據(jù),由向量,的坐標直接計算即得;(2)先求出,再根據(jù)向量平行的坐標關(guān)系解得.【詳解】(1)由題,向量,,則.(2),.,,整理得,化簡得,即,,,,即.【點睛】本題考查平面向量的坐標運算,以及向量平行,是??碱}型.20.(1)(2)詳見解析【解析】
(1),在上,因為是減函數(shù),所以恒成立,即恒成立,只需.令,,則,因為,所以.所以在上是增函數(shù),所以,所以,解得.所以實數(shù)的最大值為.(2),.令,則,根據(jù)題意知,所以在上是增函數(shù).又因為,當從正方向趨近于0時,趨近于,趨近于1,所以,所以存在,使,即,,所以對任意,,即,所以在上是減函數(shù);對任意,,即,所以在上是增函數(shù),所以當時,取得最小值,最小值為.由于,,則,當且僅當,即時取等號,所以當時,.21.(1)p=2;(2)見解析(3)見解析【解析】
(1)取n=1時,由得p=0或2,計算排除p=0的情況得到答案.(2),則,相減得到3an+1=4﹣Sn+1﹣Sn,再化簡得到,得到證明.(3)分別證明充分性和必要性,假設(shè)an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),計算化簡得2x﹣2y﹣2=1,設(shè)k=x﹣(y﹣2),計算得到k=1,得到答案.【詳解】(1)n=1時,由得p=0或2,若p=0時,,當n=2時,,解得a2=0或,而an>0,所以p=0不符合題意,故p=2;(2)當p=2時,①,則②,②﹣①并化簡得3an+1=4﹣Sn+1﹣Sn③,則3an+2=4﹣Sn+2﹣Sn+1④,④﹣③得(n∈N*),又因為,所以數(shù)列{an}是等比數(shù)列,且;(3)充分性:若x=1,y=2,由知an,2xan+1,2yan+2依次為,,,滿足,即an,2xan+1,2yan+2成等差數(shù)列;必要性:假設(shè)an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),又,所以,化簡得2x﹣2y﹣2=1,顯然x>y﹣2,設(shè)k=x﹣(y﹣2),因為x、y均為整數(shù),所以當k≥2時,2x﹣2y﹣2>1或2x﹣2y﹣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二四前期物業(yè)服務(wù)協(xié)議及社區(qū)文化活動服務(wù)合同3篇
- 2024年高端紅酒代理銷售合同協(xié)議
- 2025年度市場調(diào)研服務(wù)外包合同4篇
- 二零二四年個性化嬰兒護理服務(wù)與月嫂雇傭協(xié)議3篇
- 2025年茶店加盟管理合同范本簡易4篇
- 專業(yè)蝦苗供應協(xié)議模板2024年適用版A版
- 2025年度航空器材產(chǎn)品定制采購服務(wù)協(xié)議4篇
- 2025年度城市地下綜合管廊建設(shè)施工合同9篇
- 2025年茶樓茶葉采購與營銷推廣合同范本4篇
- 2024門店承包與區(qū)域市場拓展合同范本3篇
- 《庖丁解?!帆@獎?wù)n件(省級公開課一等獎)-完美版PPT
- 化工園區(qū)危險品運輸車輛停車場建設(shè)標準
- 6月大學英語四級真題(CET4)及答案解析
- 氣排球競賽規(guī)則
- 電梯維修保養(yǎng)報價書模板
- 危險化學品目錄2023
- FZ/T 81024-2022機織披風
- GB/T 33141-2016鎂鋰合金鑄錠
- JJF 1069-2012 法定計量檢定機構(gòu)考核規(guī)范(培訓講稿)
- 綜合管廊工程施工技術(shù)概述課件
- 公積金提取單身聲明
評論
0/150
提交評論