版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年人教版高一數(shù)學(xué)下冊(cè)月考試卷88考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五六總分得分評(píng)卷人得分一、選擇題(共7題,共14分)1、已知角的終邊在函數(shù)的圖像上,則的值為()A.B.C.D.2、若一個(gè)三角形的三內(nèi)角的度數(shù)既成等差數(shù)列,又成等比數(shù)列,則這個(gè)三角形的形狀為()A.直角三角形B.鈍角三角形C.等腰三角形D.等邊三角形3、函數(shù)是A.周期為的奇函數(shù)B.周期為的奇函數(shù)C.周期為的偶函數(shù)D.周期為的偶函數(shù)4、將一張畫有直角坐標(biāo)系的圖紙折疊一次,使得點(diǎn)與點(diǎn)B(4,0)重合.若此時(shí)點(diǎn)與點(diǎn)重合,則的值為()A.B.C.D.5、(2015·山東)設(shè)函數(shù)則滿足的取值范圍是()A.B.C.[)D.[)6、若點(diǎn)(x,y)在映射f下的象為點(diǎn)(2x,x-y),則(-1,2)在映射f下的原象為()A.(-2,-3)B.(-2,1)C.()D.(--)7、若函數(shù)y=f(x)的圖象如圖①所示,則圖②對(duì)應(yīng)函數(shù)的解析式可以表示為()A.y=f(|x|)B.y=|f(x)|C.y=f(-|x|)D.y=-f(|x|)評(píng)卷人得分二、填空題(共6題,共12分)8、函數(shù)f(x)=lg(x-1)的定義域是____.9、若f(x)=x3+2,則過點(diǎn)P(1,3)的切線方程為____.10、奇函數(shù)f(x)在[3,7]上是減函數(shù),在區(qū)間[3,6]上的最大值為8,最小值為-1,則2f(-6)+f(-3)=____.11、已知冪函數(shù)的圖象過點(diǎn)則.12、【題文】若集合A=B=滿足A∪B=R,A∩B=則實(shí)數(shù)m="▲".13、已知函數(shù)f(x)=log0.5(x2-ax+4a)在[2,+∞)上單調(diào)遞減,則a的取值范圍是______.評(píng)卷人得分三、證明題(共8題,共16分)14、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點(diǎn),DF⊥BE,垂足為F,CF交AD于點(diǎn)G.
求證:(1)∠CFD=∠CAD;
(2)EG<EF.15、已知D是銳角△ABC外接圓劣弧的中點(diǎn);弦AD與邊BC相交于點(diǎn)E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.16、如圖,設(shè)△ABC是直角三角形,點(diǎn)D在斜邊BC上,BD=4DC.已知圓過點(diǎn)C且與AC相交于F,與AB相切于AB的中點(diǎn)G.求證:AD⊥BF.17、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點(diǎn),DF⊥BE,垂足為F,CF交AD于點(diǎn)G.
求證:(1)∠CFD=∠CAD;
(2)EG<EF.18、初中我們學(xué)過了正弦余弦的定義,例如sin30°=,同時(shí)也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設(shè)計(jì)一種方案,解決問題:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面積S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.19、求證:(1)周長為21的平行四邊形能夠被半徑為的圓面所覆蓋.
(2)桌面上放有一絲線做成的線圈,它的周長是2l,不管線圈形狀如何,都可以被個(gè)半徑為的圓紙片所覆蓋.20、已知D是銳角△ABC外接圓劣弧的中點(diǎn);弦AD與邊BC相交于點(diǎn)E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.21、已知ABCD四點(diǎn)共圓,AB與DC相交于點(diǎn)E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點(diǎn),求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.評(píng)卷人得分四、計(jì)算題(共2題,共12分)22、規(guī)定兩數(shù)a、b通過”*”運(yùn)算得到4ab,即a*b=4ab.例如,2*6=4×2×6=48.若不論x是什么數(shù)時(shí),總有a*x=x,則a=____.23、已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2.
(1)求k的取值范圍;
(2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請(qǐng)說明理由.評(píng)卷人得分五、作圖題(共2題,共8分)24、如圖A、B兩個(gè)村子在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來水,鋪設(shè)管道費(fèi)用為每千米2000元,請(qǐng)你在CD上選擇水廠位置O,使鋪設(shè)管道的費(fèi)用最省,并求出其費(fèi)用.25、作出函數(shù)y=的圖象.評(píng)卷人得分六、綜合題(共2題,共8分)26、如圖;⊙O的直徑AB=2,AM和BN是它的兩條切線,DE切⊙O于E,交AM于D,交BN于C.設(shè)AD=x,BC=y.
(1)求證:AM∥BN;
(2)求y關(guān)于x的關(guān)系式;
(3)求四邊形ABCD的面積S.27、取一張矩形的紙進(jìn)行折疊;具體操作過程如下:
第一步:先把矩形ABCD對(duì)折;折痕為MN,如圖(1)所示;
第二步:再把B點(diǎn)疊在折痕線MN上;折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為B′,得Rt△AB′E,如圖(2)所示;
第三步:沿EB′線折疊得折痕EF;如圖(3)所示;利用展開圖(4)所示.
探究:
(1)△AEF是什么三角形?證明你的結(jié)論.
(2)對(duì)于任一矩形;按照上述方法是否都能折出這種三角形?請(qǐng)說明理由.
(3)如圖(5);將矩形紙片ABCD沿EF折疊,使點(diǎn)A落在DC邊上的點(diǎn)A′處,x軸垂直平分DA,直線EF的表達(dá)式為y=kx-k(k<0)
①問:EF與拋物線y=有幾個(gè)公共點(diǎn)?
②當(dāng)EF與拋物線只有一個(gè)公共點(diǎn)時(shí),設(shè)A′(x,y),求的值.參考答案一、選擇題(共7題,共14分)1、D【分析】試題分析:通過角的終邊在函數(shù)的圖像上,求出角的正切值即利用同角三角函數(shù)基本關(guān)系把整理成分子分母同時(shí)除以把代入即可求得答案.考點(diǎn):任意角的三角函數(shù)的定義.【解析】【答案】D.2、D【分析】【解析】試題分析:由題意∴故這個(gè)這個(gè)三角形的形狀為等邊三角形,故選D考點(diǎn):本題考查了三角形形狀的判斷【解析】【答案】D3、B【分析】【解析】
因?yàn)橹芷跒榈钠婧瘮?shù)選B【解析】【答案】B4、A【分析】試題分析:由題知:與與關(guān)于直線對(duì)稱,則垂直平分線段所以的中點(diǎn)為的方程是又因?yàn)榇怪逼椒炙越獾?,所以考點(diǎn):求點(diǎn)關(guān)于線對(duì)稱的點(diǎn)【解析】【答案】A5、C【分析】【解答】當(dāng)時(shí),所以即符合題意.
當(dāng)時(shí),若則即:所以適合題意綜上,的取值范圍是[);故選C
【分析】本題以分段函數(shù)為切入點(diǎn),深入考查了學(xué)生對(duì)函數(shù)概念的理解與掌握,同時(shí)也考查了學(xué)生對(duì)指數(shù)函數(shù)性質(zhì)的理解與運(yùn)用,滲透著對(duì)不等式的考查,是一個(gè)多知識(shí)點(diǎn)的綜合題.6、D【分析】解:根據(jù)元素的定義,得方程解得則(-1,2)在映射f下的原象為(--)
故答案選:D
根據(jù)元素定義列方程即可.
本題考查映射的概念屬于基礎(chǔ)題.【解析】【答案】D7、C【分析】解:由已知中函數(shù)圖象;
當(dāng)x≤0時(shí);兩個(gè)函數(shù)的圖象一致;
當(dāng)x>0時(shí);②對(duì)應(yīng)函數(shù)的函數(shù)值等于其相反數(shù)對(duì)應(yīng)的函數(shù)值。
故y=f(-|x|)
故選C
由已知中函數(shù)y=f(x)的圖象及圖②;我們可分析出圖②是由圖①經(jīng)過對(duì)折變換得到的,分析圖②中函數(shù)值與圖①中函數(shù)值的關(guān)系,可得圖②的變換法則,進(jìn)而得到函數(shù)的解析式.
本題以函數(shù)圖象為載體考查了函數(shù)圖象的對(duì)折變換,其中熟練掌握對(duì)折變換法則是解答的關(guān)鍵.【解析】【答案】C二、填空題(共6題,共12分)8、略
【分析】
要使函數(shù)有意義;則有x-1>0,解得,x>1;
∴函數(shù)的定義域是{x|x>1};
故答案為:{x|x>1}.
【解析】【答案】根據(jù)對(duì)數(shù)的真數(shù)大于零;列出不等式進(jìn)行求解,再用集合或區(qū)間的形式表示出來.
9、略
【分析】
∵f′(x)=3x2;
設(shè)切點(diǎn)坐標(biāo)為(t,t3+2);
則切線方程為y-t3-2=3t2(x-t);
∵切線過點(diǎn)P(1,3),∴3-t3-2=3t2(1-t);
∴t=1或t=.
∴切線的方程:y=3x或.
故答案為:3x-y=0或3x-4y+9=0.
【解析】【答案】欲求出切線方程,只須求出其斜率即可,故先設(shè)切點(diǎn)坐標(biāo)為(t,t3+2);利用導(dǎo)數(shù)求出在x=t處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率,從而問題解決,主要在某點(diǎn)處與過某點(diǎn)的區(qū)別.
10、略
【分析】
∵函數(shù)f(x)在[3;7]上是減函數(shù);
在區(qū)間[3;6]上的最大值為8,最小值為-1;
∴函數(shù)f(x)在[-7;-3]上也是減函數(shù);
區(qū)間[-6;-3]上的最大值為f(-6)=1,最小值為f(-3)=-8;
∴2f(-6)+f(-3)=2-8=-6
故答案為-6
【解析】【答案】由已有中奇函數(shù)f(x)在[3;7]上是減函數(shù),在區(qū)間[3,6]上的最大值為8,最小值為-1,我們可以根據(jù)奇函數(shù)在對(duì)稱區(qū)間上單調(diào)性一致,判斷出區(qū)間[-6,-3]上的最大值為f(-6)=1,最小值為f(-3)=-8,代入即可得到答案.
11、略
【分析】試題分析:因?yàn)闉閮绾瘮?shù),所以設(shè)因?yàn)檫^點(diǎn)所以本題易錯(cuò)點(diǎn)在將冪函數(shù)的定義寫成指數(shù)函數(shù)的形式,即考點(diǎn):冪函數(shù)定義,指數(shù)的運(yùn)算【解析】【答案】412、略
【分析】【解析】略【解析】【答案】313、略
【分析】解:令g(x)=x2-ax+3a;
∵f(x)=log0.5(x2-ax+3a)在[2;+∞)單調(diào)遞減。
∴函數(shù)g(x)在區(qū)間[2;+∞)內(nèi)單調(diào)遞增,且恒大于0.
a≤2且g(2)>0;∴a≤4且4+2a>0,∴-2<a≤4.
故答案為:(-2;4]
令g(x)=x2-ax+4a;則函數(shù)g(x)在區(qū)間[2,+∞)內(nèi)單調(diào)遞增,且恒大于0,可得不等式,從而可求a的取值范圍。
本題考查復(fù)合函數(shù)的單調(diào)性,解題的關(guān)鍵是搞清內(nèi)、外函數(shù)的單調(diào)性,同時(shí)應(yīng)注意函數(shù)的定義域.屬于基礎(chǔ)題.【解析】(-2,4]三、證明題(共8題,共16分)14、略
【分析】【分析】(1)連接AF,并延長交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點(diǎn)共圓即可;
(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點(diǎn)共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
則=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四點(diǎn)共圓;
∴∠CFD=∠CAD.
(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四點(diǎn)共圓;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.15、略
【分析】【分析】(1)求出∠BAD=∠CAD,根據(jù)角平分線性質(zhì)推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根據(jù)等腰三角形性質(zhì)求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;
(3)BF過圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F為AC中點(diǎn);
∴cosC==.
答:cosC的值是.
(3)BF過圓心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.16、略
【分析】【分析】作DE⊥AC于E,由切割線定理:AG2=AF?AC,可證明△BAF∽△AED,則∠ABF+∠DAB=90°,從而得出AD⊥BF.【解析】【解答】證明:作DE⊥AC于E;
則AC=AE;AB=5DE;
又∵G是AB的中點(diǎn);
∴AG=ED.
∴ED2=AF?AE;
∴5ED2=AF?AE;
∴AB?ED=AF?AE;
∴=;
∴△BAF∽△AED;
∴∠ABF=∠EAD;
而∠EAD+∠DAB=90°;
∴∠ABF+∠DAB=90°;
即AD⊥BF.17、略
【分析】【分析】(1)連接AF,并延長交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點(diǎn)共圓即可;
(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點(diǎn)共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
則=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四點(diǎn)共圓;
∴∠CFD=∠CAD.
(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四點(diǎn)共圓;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.18、略
【分析】【分析】(1)過點(diǎn)C作CE⊥AB于點(diǎn)E;根據(jù)正弦的定義可以表示出CE的長度,然后利用三角形的面積公式列式即可得解;
(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過點(diǎn)C作CE⊥AB于點(diǎn)E;
則CE=AC?sin(α+β)=bsin(α+β);
∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB?ACsin(α+β)=BD?AD+CD?AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.19、略
【分析】【分析】(1)關(guān)鍵在于圓心位置;考慮到平行四邊形是中心對(duì)稱圖形,可讓覆蓋圓圓心與平行四邊形對(duì)角線交點(diǎn)疊合.
(2)“曲“化“直“.對(duì)比(1),應(yīng)取均分線圈的二點(diǎn)連線段中點(diǎn)作為覆蓋圓圓心.【解析】【解答】
證明:(1)如圖1;設(shè)ABCD的周長為2l,BD≤AC,AC;BD交于O,P為周界上任意一點(diǎn),不妨設(shè)在AB上;
則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周長為2l的平行四邊形ABCD可被以O(shè)為圓心;半徑為的圓所覆蓋;命題得證.
(2)如圖2,在線圈上分別取點(diǎn)R,Q,使R、Q將線圈分成等長兩段,每段各長l.又設(shè)RQ中點(diǎn)為G,M為線圈上任意一點(diǎn),連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G為圓心,長為半徑的圓紙片可以覆蓋住整個(gè)線圈.20、略
【分析】【分析】(1)求出∠BAD=∠CAD,根據(jù)角平分線性質(zhì)推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根據(jù)等腰三角形性質(zhì)求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;
(3)BF過圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F為AC中點(diǎn);
∴cosC==.
答:cosC的值是.
(3)BF過圓心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.21、略
【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時(shí)發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實(shí)現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進(jìn)一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;
由圖知:∠FDC是△ACD的一個(gè)外角;
則有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四邊形ABCD是圓的內(nèi)接四邊形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分別是∠AFB、∠AED的角平分線;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)連接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可證得∠NEX=∠MEX;
故FX、EX分別平分∠MFN與∠MEN.四、計(jì)算題(共2題,共12分)22、略
【分析】【分析】根據(jù)a*b=4ab得到4ax=x,求出方程的解即可.【解析】【解答】解:∵a*x=x;
∴4ax=x;
當(dāng)x≠0時(shí);
∴a=.
故答案為:.23、略
【分析】【分析】(1)根據(jù)一元二次方程的根的情況的判斷方法,可得:;解可得答案;
(2)假設(shè)存在,由相反數(shù)的意義,即方程的兩根的和是0,依據(jù)一元二次方程的根與系數(shù)的關(guān)系即可得到兩根的和是=0,可得k的值;把k的值代入判別式△,判斷是否大于0可得結(jié)論.【解析】【解答】解:(1)根據(jù)題意得:;(2分)
∴且k≠0;(3分)
(2)假設(shè)存在;根據(jù)一元二次方程根與系數(shù)的關(guān)系;
有x1+x2==0,即;(4分)
但當(dāng)時(shí);△<0,方程無實(shí)數(shù)根(5分)
∴不存在實(shí)數(shù)k,使方程兩根互為相反數(shù).(6分)五、作圖題(共2題,共8分)24、略
【分析】【分析】作點(diǎn)A關(guān)于河CD的對(duì)稱點(diǎn)A′,當(dāng)水廠位置O在線段AA′上時(shí),鋪設(shè)管道的費(fèi)用最?。窘馕觥俊窘獯稹拷猓鹤鼽c(diǎn)A關(guān)于河CD的對(duì)稱點(diǎn)A′;連接A′B,交CD與點(diǎn)O,則點(diǎn)O即為水廠位置,此時(shí)鋪設(shè)的管道長度為OA+OB.
∵點(diǎn)A與點(diǎn)A′關(guān)于CD對(duì)稱;
∴OA′=OA;A′C=AC=1;
∴OA+OB=OA′+OB=A′B.
過點(diǎn)A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;
∴在Rt△A′BE中,A′B==5(千米);
∴2000×5=10000(元).
答:鋪設(shè)管道的最省費(fèi)用為10000元.25、【解答】圖象如圖所示。
【分析】【分析】描點(diǎn)畫圖即可六、綜合題(共2題,共8分)26、略
【分析】【分析】(1)由AB是直徑;AM;BN是切線,得到AM⊥AB,BN⊥AB,根據(jù)垂直于同一條直線的兩直線平行即可得到結(jié)論;
(2)過點(diǎn)D作DF⊥BC于F;則AB∥DF,由(1)AM∥BN,得到四邊形ABFD為矩形,于是得到DF=AB=2,BF=AD=x,根據(jù)切線長定理得DE=DA=x,CE=CB=y.根據(jù)勾股定理即可得到結(jié)果
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度成都事業(yè)單位勞動(dòng)合同范本(含員工行為規(guī)范)
- 2025年度綠色能源PPP項(xiàng)目投資合作協(xié)議范本3篇
- Unit4SectionB2a-2e說課稿2024-2025學(xué)年人教版英語八年級(jí)上冊(cè)
- 二零二五年度建筑工程施工合同:水渠硬化工程專業(yè)分包協(xié)議2篇
- 期末評(píng)估測(cè)試卷(二) (含答案)2024-2025學(xué)年數(shù)學(xué)冀教版八年級(jí)下冊(cè)
- 甘肅省甘南藏族自治州(2024年-2025年小學(xué)六年級(jí)語文)部編版摸底考試(上學(xué)期)試卷及答案
- 西藏那曲地區(qū)(2024年-2025年小學(xué)六年級(jí)語文)統(tǒng)編版階段練習(xí)((上下)學(xué)期)試卷及答案
- 貴州輕工職業(yè)技術(shù)學(xué)院《建筑外觀裝飾設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 新疆巴音郭楞蒙古自治州(2024年-2025年小學(xué)六年級(jí)語文)部編版能力評(píng)測(cè)(下學(xué)期)試卷及答案
- 貴州農(nóng)業(yè)職業(yè)學(xué)院《明史趣談》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年郵政系統(tǒng)招聘考試-郵政營業(yè)員考試近5年真題集錦(頻考類試題)帶答案
- 2023視頻監(jiān)控人臉識(shí)別系統(tǒng)技術(shù)規(guī)范
- 醫(yī)學(xué)教案SPZ-200型雙向道床配碴整形車操作保養(yǎng)維修手冊(cè)
- 2024年四川省宜賓市敘州區(qū)六年級(jí)數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)試題含解析
- 獸醫(yī)學(xué)英語詞匯【參考】
- 10《吃飯有講究》(教學(xué)設(shè)計(jì))-2024-2025學(xué)年道德與法治一年級(jí)上冊(cè)統(tǒng)編版
- 2024-2030年中國干燥設(shè)備行業(yè)研發(fā)創(chuàng)新狀況及發(fā)展行情監(jiān)測(cè)研究報(bào)告
- 2024仁愛版新教材七年級(jí)上冊(cè)英語新課程內(nèi)容解讀課件(深度)
- 藥物生殖毒性研究技術(shù)指導(dǎo)原則
- 《UI界面設(shè)計(jì)》教案
- 食品技術(shù)咨詢服務(wù)
評(píng)論
0/150
提交評(píng)論