貴州銅仁數(shù)據(jù)職業(yè)學(xué)院《機(jī)器學(xué)習(xí)與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
貴州銅仁數(shù)據(jù)職業(yè)學(xué)院《機(jī)器學(xué)習(xí)與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
貴州銅仁數(shù)據(jù)職業(yè)學(xué)院《機(jī)器學(xué)習(xí)與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
貴州銅仁數(shù)據(jù)職業(yè)學(xué)院《機(jī)器學(xué)習(xí)與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁貴州銅仁數(shù)據(jù)職業(yè)學(xué)院《機(jī)器學(xué)習(xí)與人工智能》

2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在構(gòu)建一個機(jī)器學(xué)習(xí)模型時,如果數(shù)據(jù)中存在噪聲,以下哪種方法可以幫助減少噪聲的影響()A.增加正則化項(xiàng)B.減少訓(xùn)練輪數(shù)C.增加模型的復(fù)雜度D.以上方法都不行2、在機(jī)器學(xué)習(xí)中,降維是一種常見的操作,用于減少特征的數(shù)量。以下哪種降維方法是基于線性變換的?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-SNED.以上都是3、在進(jìn)行遷移學(xué)習(xí)時,以下關(guān)于遷移學(xué)習(xí)的應(yīng)用場景和優(yōu)勢,哪一項(xiàng)是不準(zhǔn)確的?()A.當(dāng)目標(biāo)任務(wù)的數(shù)據(jù)量較少時,可以利用在大規(guī)模數(shù)據(jù)集上預(yù)訓(xùn)練的模型進(jìn)行遷移學(xué)習(xí)B.可以將在一個領(lǐng)域?qū)W習(xí)到的模型參數(shù)直接應(yīng)用到另一個不同但相關(guān)的領(lǐng)域中C.遷移學(xué)習(xí)能夠加快模型的訓(xùn)練速度,提高模型在新任務(wù)上的性能D.遷移學(xué)習(xí)只適用于深度學(xué)習(xí)模型,對于傳統(tǒng)機(jī)器學(xué)習(xí)模型不適用4、在一個分類問題中,如果數(shù)據(jù)集中存在多個類別,且類別之間存在層次結(jié)構(gòu),以下哪種方法可以考慮這種層次結(jié)構(gòu)?()A.多分類邏輯回歸B.決策樹C.層次分類算法D.支持向量機(jī)5、假設(shè)要開發(fā)一個疾病診斷的輔助系統(tǒng),能夠根據(jù)患者的醫(yī)學(xué)影像(如X光、CT等)和臨床數(shù)據(jù)做出診斷建議。以下哪種模型融合策略可能是最有效的?()A.簡單平均多個模型的預(yù)測結(jié)果,計(jì)算簡單,但可能無法充分利用各個模型的優(yōu)勢B.基于加權(quán)平均的融合,根據(jù)模型的性能或重要性分配權(quán)重,但權(quán)重的確定可能具有主觀性C.采用堆疊(Stacking)方法,將多個模型的輸出作為新的特征輸入到一個元模型中進(jìn)行融合,但可能存在過擬合風(fēng)險D.基于注意力機(jī)制的融合,動態(tài)地根據(jù)輸入數(shù)據(jù)為不同模型分配權(quán)重,能夠更好地適應(yīng)不同情況,但實(shí)現(xiàn)較復(fù)雜6、在進(jìn)行模型選擇時,我們通常會使用交叉驗(yàn)證來評估不同模型的性能。如果在交叉驗(yàn)證中,某個模型的性能波動較大,這可能意味著()A.模型不穩(wěn)定,需要進(jìn)一步調(diào)整B.數(shù)據(jù)存在問題C.交叉驗(yàn)證的設(shè)置不正確D.該模型不適合當(dāng)前任務(wù)7、假設(shè)正在進(jìn)行一項(xiàng)時間序列預(yù)測任務(wù),例如預(yù)測股票價格的走勢。在選擇合適的模型時,需要考慮時間序列的特點(diǎn),如趨勢、季節(jié)性和噪聲等。以下哪種模型在處理時間序列數(shù)據(jù)時具有較強(qiáng)的能力?()A.線性回歸模型,簡單直接,易于解釋B.決策樹模型,能夠處理非線性關(guān)系C.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),能夠捕捉時間序列中的長期依賴關(guān)系D.支持向量回歸(SVR),對小樣本數(shù)據(jù)效果較好8、假設(shè)要為一個智能推薦系統(tǒng)選擇算法,根據(jù)用戶的歷史行為、興趣偏好和社交關(guān)系為其推薦相關(guān)的產(chǎn)品或內(nèi)容。以下哪種算法或技術(shù)可能是最適合的?()A.基于協(xié)同過濾的推薦算法,利用用戶之間的相似性或物品之間的相關(guān)性進(jìn)行推薦,但存在冷啟動和數(shù)據(jù)稀疏問題B.基于內(nèi)容的推薦算法,根據(jù)物品的特征和用戶的偏好匹配推薦,但對新物品的推薦能力有限C.混合推薦算法,結(jié)合協(xié)同過濾和內(nèi)容推薦的優(yōu)點(diǎn),并通過特征工程和模型融合提高推薦效果,但實(shí)現(xiàn)復(fù)雜D.基于強(qiáng)化學(xué)習(xí)的推薦算法,通過與用戶的交互不斷優(yōu)化推薦策略,但訓(xùn)練難度大且收斂慢9、過擬合是機(jī)器學(xué)習(xí)中常見的問題之一。以下關(guān)于過擬合的說法中,錯誤的是:過擬合是指模型在訓(xùn)練數(shù)據(jù)上表現(xiàn)很好,但在測試數(shù)據(jù)上表現(xiàn)不佳。過擬合的原因可能是模型過于復(fù)雜或者訓(xùn)練數(shù)據(jù)不足。那么,下列關(guān)于過擬合的說法錯誤的是()A.增加訓(xùn)練數(shù)據(jù)可以緩解過擬合問題B.正則化是一種常用的防止過擬合的方法C.過擬合只在深度學(xué)習(xí)中出現(xiàn),傳統(tǒng)的機(jī)器學(xué)習(xí)算法不會出現(xiàn)過擬合問題D.可以通過交叉驗(yàn)證等方法來檢測過擬合10、在進(jìn)行聚類分析時,有多種聚類算法可供選擇。假設(shè)我們要對一組客戶數(shù)據(jù)進(jìn)行細(xì)分,以發(fā)現(xiàn)不同的客戶群體。以下關(guān)于聚類算法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.K-Means算法需要預(yù)先指定聚類的個數(shù)K,并通過迭代優(yōu)化來確定聚類中心B.層次聚類算法通過不斷合并或分裂聚類來構(gòu)建聚類層次結(jié)構(gòu)C.密度聚類算法(DBSCAN)可以發(fā)現(xiàn)任意形狀的聚類,并且對噪聲數(shù)據(jù)不敏感D.所有的聚類算法都能保證得到的聚類結(jié)果是最優(yōu)的,不受初始條件和數(shù)據(jù)分布的影響11、考慮一個圖像分割任務(wù),即將圖像分割成不同的區(qū)域或?qū)ο蟆R韵履姆N方法常用于圖像分割?()A.閾值分割B.區(qū)域生長C.邊緣檢測D.以上都是12、在進(jìn)行異常檢測時,以下關(guān)于異常檢測方法的描述,哪一項(xiàng)是不正確的?()A.基于統(tǒng)計(jì)的方法通過計(jì)算數(shù)據(jù)的均值、方差等統(tǒng)計(jì)量來判斷異常值B.基于距離的方法通過計(jì)算樣本之間的距離來識別異常點(diǎn)C.基于密度的方法認(rèn)為異常點(diǎn)的局部密度顯著低于正常點(diǎn)D.所有的異常檢測方法都能準(zhǔn)確地檢測出所有的異常,不存在漏檢和誤檢的情況13、在機(jī)器學(xué)習(xí)中,模型的可解釋性是一個重要的方面。以下哪種模型通常具有較好的可解釋性?()A.決策樹B.神經(jīng)網(wǎng)絡(luò)C.隨機(jī)森林D.支持向量機(jī)14、在進(jìn)行模型評估時,除了準(zhǔn)確率、召回率等指標(biāo),還可以使用混淆矩陣來更全面地了解模型的性能。假設(shè)我們有一個二分類模型的混淆矩陣。以下關(guān)于混淆矩陣的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.混淆矩陣的行表示真實(shí)類別,列表示預(yù)測類別B.真陽性(TruePositive,TP)表示實(shí)際為正例且被預(yù)測為正例的樣本數(shù)量C.假陰性(FalseNegative,F(xiàn)N)表示實(shí)際為正例但被預(yù)測為負(fù)例的樣本數(shù)量D.混淆矩陣只能用于二分類問題,不能用于多分類問題15、在使用樸素貝葉斯算法進(jìn)行分類時,以下關(guān)于樸素貝葉斯的假設(shè)和特點(diǎn),哪一項(xiàng)是不正確的?()A.假設(shè)特征之間相互獨(dú)立,簡化了概率計(jì)算B.對于連續(xù)型特征,通常需要先進(jìn)行離散化處理C.樸素貝葉斯算法對輸入數(shù)據(jù)的分布沒有要求,適用于各種類型的數(shù)據(jù)D.樸素貝葉斯算法在處理高維度數(shù)據(jù)時性能較差,容易出現(xiàn)過擬合16、在特征工程中,獨(dú)熱編碼(One-HotEncoding)用于()A.處理類別特征B.處理數(shù)值特征C.降維D.以上都不是17、在一個強(qiáng)化學(xué)習(xí)場景中,智能體需要在一個復(fù)雜的環(huán)境中學(xué)習(xí)最優(yōu)策略。如果環(huán)境的獎勵信號稀疏,以下哪種技術(shù)可以幫助智能體更好地學(xué)習(xí)?()A.獎勵塑造B.策略梯度估計(jì)的改進(jìn)C.經(jīng)驗(yàn)回放D.以上技術(shù)都可以18、某研究團(tuán)隊(duì)正在開發(fā)一個語音識別系統(tǒng),需要對語音信號進(jìn)行特征提取。以下哪種特征在語音識別中被廣泛使用?()A.梅爾頻率倒譜系數(shù)(MFCC)B.線性預(yù)測編碼(LPC)C.感知線性預(yù)測(PLP)D.以上特征都常用19、假設(shè)要對一個大型數(shù)據(jù)集進(jìn)行無監(jiān)督學(xué)習(xí),以發(fā)現(xiàn)潛在的模式和結(jié)構(gòu)。以下哪種方法可能是首選?()A.自編碼器(Autoencoder),通過重構(gòu)輸入數(shù)據(jù)學(xué)習(xí)特征,但可能無法發(fā)現(xiàn)復(fù)雜模式B.生成對抗網(wǎng)絡(luò)(GAN),通過對抗訓(xùn)練生成新數(shù)據(jù),但訓(xùn)練不穩(wěn)定C.深度信念網(wǎng)絡(luò)(DBN),能夠提取高層特征,但訓(xùn)練難度較大D.以上方法都可以嘗試,根據(jù)數(shù)據(jù)特點(diǎn)和任務(wù)需求選擇20、某機(jī)器學(xué)習(xí)項(xiàng)目需要對大量的圖像進(jìn)行分類,但是計(jì)算資源有限。以下哪種技術(shù)可以在不顯著降低性能的前提下減少計(jì)算量?()A.模型壓縮B.數(shù)據(jù)量化C.遷移學(xué)習(xí)D.以上技術(shù)都可以考慮21、強(qiáng)化學(xué)習(xí)中的智能體通過與環(huán)境的交互來學(xué)習(xí)最優(yōu)策略。以下關(guān)于強(qiáng)化學(xué)習(xí)的說法中,錯誤的是:強(qiáng)化學(xué)習(xí)的目標(biāo)是最大化累計(jì)獎勵。智能體根據(jù)當(dāng)前狀態(tài)選擇動作,環(huán)境根據(jù)動作反饋新的狀態(tài)和獎勵。那么,下列關(guān)于強(qiáng)化學(xué)習(xí)的說法錯誤的是()A.Q學(xué)習(xí)是一種基于值函數(shù)的強(qiáng)化學(xué)習(xí)算法B.策略梯度算法是一種基于策略的強(qiáng)化學(xué)習(xí)算法C.強(qiáng)化學(xué)習(xí)算法只適用于離散動作空間,對于連續(xù)動作空間不適用D.強(qiáng)化學(xué)習(xí)可以應(yīng)用于機(jī)器人控制、游戲等領(lǐng)域22、假設(shè)正在進(jìn)行一個異常檢測任務(wù),例如檢測網(wǎng)絡(luò)中的異常流量。如果正常數(shù)據(jù)的模式較為復(fù)雜,以下哪種方法可能更適合用于發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于分類的方法23、在一個多分類問題中,如果類別之間存在層次關(guān)系,以下哪種分類方法可以考慮這種層次結(jié)構(gòu)?()A.層次分類B.一對一分類C.一對多分類D.以上方法都可以24、在進(jìn)行強(qiáng)化學(xué)習(xí)中的策略優(yōu)化時,以下關(guān)于策略優(yōu)化方法的描述,哪一項(xiàng)是不正確的?()A.策略梯度方法通過直接計(jì)算策略的梯度來更新策略參數(shù)B.信賴域策略優(yōu)化(TrustRegionPolicyOptimization,TRPO)通過限制策略更新的幅度來保證策略的改進(jìn)C.近端策略優(yōu)化(ProximalPolicyOptimization,PPO)是一種基于策略梯度的改進(jìn)算法,具有更好的穩(wěn)定性和收斂性D.所有的策略優(yōu)化方法在任何強(qiáng)化學(xué)習(xí)任務(wù)中都能取得相同的效果,不需要根據(jù)任務(wù)特點(diǎn)進(jìn)行選擇25、在機(jī)器學(xué)習(xí)中,模型的選擇和超參數(shù)的調(diào)整是非常重要的環(huán)節(jié)。通??梢允褂媒徊骝?yàn)證技術(shù)來評估不同模型和超參數(shù)組合的性能。假設(shè)有一個分類模型,我們想要確定最優(yōu)的正則化參數(shù)C。如果采用K折交叉驗(yàn)證,以下關(guān)于K的選擇,哪一項(xiàng)是不太合理的?()A.K=5,平衡計(jì)算成本和評估準(zhǔn)確性B.K=2,快速得到初步的評估結(jié)果C.K=10,提供更可靠的評估D.K=n(n為樣本數(shù)量),確保每個樣本都用于驗(yàn)證一次二、簡答題(本大題共4個小題,共20分)1、(本題5分)說明機(jī)器學(xué)習(xí)在病理學(xué)中的樣本分析。2、(本題5分)解釋機(jī)器學(xué)習(xí)在圖書館學(xué)中的資源管理。3、(本題5分)簡述機(jī)器學(xué)習(xí)在醫(yī)療診斷中的應(yīng)用案例。4、(本題5分)說明機(jī)器學(xué)習(xí)在急診醫(yī)學(xué)中的快速診斷。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)使用強(qiáng)化學(xué)習(xí)算法訓(xùn)練機(jī)器人完成復(fù)雜任務(wù),如搬運(yùn)物品。2、(本題5分)利用門控循環(huán)單元(GRU)對語音信號進(jìn)行分類。3、(本題5分)運(yùn)用LSTM網(wǎng)絡(luò)對股市的波動進(jìn)行預(yù)測。4、(本題5分)利用神經(jīng)生物學(xué)數(shù)據(jù)研究神經(jīng)系統(tǒng)的結(jié)構(gòu)和功能。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論