版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ThestateofAIin2022—andahalfdecadeinreview
December2022
Theresultsofthisyear’sMcKinseyGlobalSurveyonAIshowtheexpansionofthe
technology’susesincewebegantrackingitfiveyearsago,butwithanuanced
pictureunderneath.1Adoptionhasmorethandoubledsince2017,thoughthepro-
portionoforganizationsusingAIhasplateauedbetween50and60percentfor
thepastfewyears.AsetofcompaniesseeingthehighestfinancialreturnsfromAIcontinuetopullaheadofcompetitors.TheresultsshowtheseleadersmakinglargerinvestmentsinAI,engaginginincreasinglyadvancedpracticesknowntoenable
scaleandfasterAIdevelopment,andshowingsignsoffaringbetterinthetight
marketforAItalent.Ontalent,forthefirsttime,welookedcloselyatAIhiringand
upskilling.ThedatashowthatthereissignificantroomtoimprovediversityonAI
teams,and,consistentwithotherstudies,diverseteamscorrelatewithoutstandingperformance.
Fiveyearsin
review:AIadoption,impact,andspend
Thismarksthefifthconsecutiveyearwe’veconductedresearchgloballyonAI’sroleinbusiness,andwehaveseenshiftsoverthisperiod.
First,AIadoptionhasmorethandoubled.2In2017,20percentofrespondentsreportedadoptingAIinatleastonebusinessarea,whereastoday,thatfigurestandsat50percent,thoughitpeakedhigherin2019at58percent.
Meanwhile,theaveragenumberofAIcapabilitiesthatorganizationsuse,suchasnatural-languagegenerationandcomputervision,hasalsodoubled—from1.9in2018to3.8in2022.Amongthese
1Inthesurvey,wedefinedAIastheabilityofamachinetoperformcognitivefunctionsthatweassociatewithhumanminds(forexample,
natural-languageunderstandingandgeneration)andtoperformphysicaltasksusingcognitivefunctions(forexample,physicalrobotics,autonomousdriving,andmanufacturingwork).
2In2017,thedefinitionforAIadoptionwasusingAIinacorepartoftheorganization’sbusinessoratscale.In2018and2019,thedefinitionwasembeddingatleastoneAIcapabilityinbusinessprocessesorproducts.In2020,2021,and2022,thedefinitionwasthatthe
organizationhasadoptedAIinatleastonefunction.
2ThestateofAIin2022—andahalfdecadeinreview
capabilities,roboticprocessautomationandcomputervisionhaveremainedthemostcommonlydeployedeach
year,whilenatural-languagetextunderstandinghasadvancedfromthemiddleofthepackin2018tothefrontofthelistjustbehindcomputervision.
ResponsesshowanincreasingnumberofAIcapabilitiesembeddedinorganizationsoverthepastfiveyears.
AveragenumberofAIcapabilitiesthat
respondents’organizationshaveembeddedwithinatleastonefunctionorbusinessunit1
50
56
475850
20
.
ShareofrespondentswhosaytheirorganizationshaveadoptedAIinatleastonefunction,%
3.93.1
●
3.8
2.31.9
2018
2019
2020
2021
2022
201720182019202020212022
%ofrespondentswhosaygivenAIcapabilityisembeddedinproductsorbusinessprocessesinatleastonefunctionorbusinessunit2
Roboticprocessautomation39
Computervision34 Natural-languagetextunderstanding33Virtualagentsorconversationalinterfaces33
Deeplearning30
Knowledgegraphs25Recommendersystems25Digitaltwins24
Natural-languagespeechunderstanding23Physicalrobotics20
Reinforcementlearning20Facialrecognition18
Natural-languagegeneration18Transferlearning16
Generativeadversarialnetworks(GAN)11Transformers11
1Thenumberofcapabilitiesincludedinthesurveyhasgrownovertime,from9in2018to15inthe2022survey.2QuestionwasaskedonlyofrespondentswhosaidtheirorganizationshaveadoptedAIinatleastonefunction.
ThestateofAIin2022—andahalfdecadeinreview3
Thetopusecases,however,haveremainedrelativelystable:optimizationofserviceoperationshastakenthetopspoteachofthepastfouryears.
Second,thelevelofinvestmentinAIhasincreasedalongsideitsrisingadoption.Forexample,fiveyearsago,40percentofrespondentsatorganizationsusingAIreportedmorethan5percentoftheirdigital
budgetswenttoAI,whereasnowmorethanhalfofrespondentsreportthatlevelofinvestment.Going
forward,63percentofrespondentssaytheyexpecttheirorganizations’investmenttoincreaseoverthenextthreeyears.
ThemostpopularAIusecasesspanarangeoffunctionalactivities.
Topusecases
Usecasesbyfunction
MostcommonlyadoptedAIusecases,byfunction,%ofrespondents1
Serviceoperations2Productand/orservicedevelopmentMarketingandsalesRisk
Serviceoperationsoptimization24CreationofnewAI-basedproducts20
Customerserviceanalytics19
Customersegmentation19NewAI-basedenhancementsofproducts19
Customeracquisitionandleadgeneration17Contact-centerautomation16Productfeatureoptimization16
Riskmodelingandanalytics15Predictiveserviceandintervention14
1Outof39usecases.QuestionwasaskedonlyofrespondentswhosaidtheirorganizationshaveadoptedAIinatleastonefunction.2Eg,fieldservices,customercare,backoffice.
4ThestateofAIin2022—andahalf-decadeinreview
ThemostpopularAIusecasesspanarangeoffunctionalactivities.
Topusecases
Usecasesbyfunction
MostcommonlyadoptedAIusecaseswithineachbusinessfunction,%ofrespondents1
Serviceoperations2
Serviceoperationsoptimization
24
Contact-centerautomation
16
Marketingandsales
Customerserviceanalytics
19
Customersegmentation
19
Risk
Riskmodelingandanalytics
15
Fraudanddebtanalytics
11
Strategyandcorporate?nance
Capitalallocation7Treasurymanagement4M&Asupport4
Productand/orservicedevelopment
CreationofnewAI-basedproducts
NewAI-basedenhancementsofproducts
2019
Supplychainmanagement
Salesanddemandforecasting
Logisticsnetworkoptimization
109
Humanresources
Optimizationoftalentmanagement
Optimizationofworkforcedeployment
10
5
Manufacturing
13
Predictivemaintenance
11
Yield,energy,and/or
throughputoptimization
11
Simulations(eg,usingdigitaltwins,3Dmodeling)
1QuestionwasaskedonlyofrespondentswhosaidtheirorganizationshaveadoptedAIinatleastonefunction.2Eg,fieldservices,customercare,backoffice.
Third,thespecificareasinwhichcompaniesseevaluefromAIhaveevolved.In2018,manufacturingandriskwerethetwofunctionsinwhichthelargestsharesofrespondentsreportedseeingvaluefromAI
use.Today,thebiggestreportedrevenueeffectsarefoundinmarketingandsales,productandservicedevelopment,andstrategyandcorporatefinance,andrespondentsreportthehighestcostbenefits
fromAIinsupplychainmanagement.Thebottom-linevaluerealizedfromAIremainsstrongandlargelyconsistent.Aboutaquarterofrespondentsreportthisyearthatatleast5percentoftheirorganizations’EBITwasattributabletoAIin2021,inlinewithfindingsfromtheprevioustwoyears,whenwe’vealso
trackedthismetric.
Lastly,onethingthathasremainedconcerninglyconsistentisthelevelofriskmitigationorganizations
engageintobolsterdigitaltrust.WhileAIusehasincreased,therehavebeennosubstantialincreasesinreportedmitigationofanyAI-relatedrisksfrom2019—whenwefirstbegancapturingthisdata—tonow.
ThestateofAIin2022—andahalfdecadeinreview5
AI-relatedcostdecreasesaremostoftenreportedinsupplychain
managementandrevenueincreasesinproductdevelopmentandmarketingandsales.
CostdecreaseandrevenueincreasefromAIadoptionin2021,byfunction,%ofrespondents1
Decreaseby10–19%
ServiceoperationsManufacturing
Humanresources
MarketingandsalesRisk
Supplychainmanagement52Productand/orservicedevelopment
Strategyandcorporate?nance
Averageacrossallactivites
1QuestionwasaskedonlyofrespondentswhosaidtheirorganizationshaveadoptedAIinagivenfunction.Respondentswhosaid“nochange,”“costincrease,”“notapplicable,”or“don’tknow”arenotshown.
4529106
423273
29253
282143
433085
4174
Increaseby6–10%
37
Increaseby≤5%
57
Decreaseby<10%
Decreaseby≥20%
Increaseby>10%
3184
2363
2046
14
13
10
10
9
10
8
8
30
20
48
70
70
36
43
58
28
59
63
65
33
33
32
24
27
10
18
16
19
13
61
31
41
41
14
17
1
11
Therehasbeennosubstantialincreaseinorganizations’reportedmitigationofAI-relatedrisks.
AIrisksthatorganizationsconsiderrelevantandareworkingtomitigate,%ofrespondents1
20192022
51
48
3536
30
28
22
1718
13
11
74o
Regulatorycompliance
displacement
1QuestionwasaskedonlyofrespondentswhosaidtheirorganizationshadadoptedAIinatleastonefunction;n=1,151.Respondentswhosaid“don'tknow/notapplicable”arenotshown.
2Thatis,theabilitytoexplainhowAImodelscometotheirdecisions.
Organi-zational
reputation
Personal/
individual
privacy
Equity
and
fairness
Workforce/
labor
Nationalsecurity
Physicalsafety
Explain-ability2
Cyber-security
Politicalstability
22
19
19
15
17
4
2
6ThestateofAIin2022—andahalfdecadeinreview
McKinseycommentary
MichaelChui
Partner,McKinseyGlobalInstitute
Overthepasthalfdecade,duringwhichwe’vebeenconductingourglobalsurvey,wehaveseenthe“AIwinter”turnintoan“AIspring.”However,afteraperiodofinitialexuberance,weappeartohavereachedaplateau,acoursewe’veobservedwithothertechnologiesintheirearlyyearsof
adoption.Wemightbeseeingtherealitysinkinginatsomeorganizationsoftheleveloforganiza-tionalchangeittakestosuccessfullyembedthistechnology.
Inourwork,we’veencounteredcompaniesthatgetdiscouragedbecausetheywentintoAI
thinkingitwouldbeaquickexercise,whilethosetakingalongerviewhavemadesteadyprog-
ressbytransformingthemselvesintolearningorganizationsthatbuildtheirAImusclesovertime.ThesecompaniesgraduallyincorporatemoreAIcapabilitiesandstandupincreasinglymore
applicationsprogressivelyfasterandmoreeasilythankstolessonsfrompastsuccessesaswell
asfailures.Theynotonlyinvestmore,buttheyalsoinvestmorewisely,withthegoalofcreatingaveritableAIfactorythatenablesthemtoincorporatemoreAIinmoreareasofthebusiness,firstin
adjacentoneswheresomeexistingcapabilitiescanberepurposedandthenintoentirelynewones.
Thereis,atahighlevel,anemergingplaybookforgettingmaximumvaluefromAI.Eachyearthat
weconductourresearch,weseeagroupofleadersengaginginthetypesofpracticesthathelp
executeAIsuccessfully.It’spayingoffintheformofactualbottom-lineimpactatsignificantlevels.WealsoseeiteverydayasweguideothersontheirAIjourneys.It’snoteasywork,butashas
beenthecasewithprevioustechnologies,thegainswillgotothosewhostaythecourse.
Thosetakingalongerview
havemadesteadyprogressby
transformingthemselvesinto
learningorganizationsthatbuildtheirAImusclesovertime.
ThestateofAIin2022—andahalfdecadeinreview7
AIuseandsustainabilityefforts
ThesurveyfindingssuggestthatmanyorganizationsthathaveadoptedAIareintegratingAIcapabilitiesintotheirsustainabilityeffortsandarealsoactivelyseekingwaystoreducetheenvironmentalimpactoftheirAI
use(exhibit).Ofrespondentsfromorganizationsthat
haveadoptedAI,43percentsaytheirorganizationsareusingAItoassistinsustainabilityefforts,and40per-
centsaytheirorganizationsareworkingtoreducetheenvironmentalimpactoftheirAIusebyminimizingtheenergyusedtotrainandrunAImodels.AscompaniesthathaveinvestedmoreinAIandhavemoremature
AIeffortsthanothers,highperformersare1.4times
morelikelythanotherstoreportAI-enabledsustain-
abilityeffortsaswellastosaytheirorganizationsare
workingtodecreaseAI-relatedemissions.Bothefforts
aremorecommonlyseenatorganizationsbasedin
GreaterChina,Asia–Pacific,anddevelopingmarkets,whilerespondentsinNorthAmericaareleastlikelytoreportthem.
WhenaskedaboutthetypesofsustainabilityeffortsusingAI,respondentsmostoftenmentioninitiativestoimproveenvironmentalimpact,suchasoptimiza-
tionofenergyefficiencyorwastereduction.AIuse
isleastcommonineffortstoimproveorganizations’
socialimpact(forexample,sourcingofethicallymadeproducts),thoughrespondentsworkingforNorth
Americanorganizationsaremorelikelythantheirpeerstoreportthatuse.
Exhibit
OrganizationsareusingAIwithinsustainabilityefortsandareworkingtoreducetheenvironmentalimpactoftheirAIuse.
OrganizationsusingAIintheirsustainabilityeforts,%ofrespondents1
GreaterChina261
Asia–Pacic54Developingmarkets344
Europe39NorthAmerica30
Improvingtheorganization’senvironmentalimpact(eg,improvingenergyefficiency,optimizingtransportation)
Evaluatingsustainabilityefforts(eg,benchmarking)
Improvingtheorganization’sgovernance
(eg,regulatorycompliance,riskmanagement)
Improvingtheorganization’ssocial
impact(eg,sourcingethicalproducts)
OrganizationstakingstepstoreducecarbonemissionsfromtheirAIuse,%ofrespondents1
Developingmarkets353Asia–Pacic47
GreaterChina246Europe36
62
NorthAmerica31
Typesofsustainabilityefortsinwhichrespondents’organizationsareusingAI?
51
45
34
1OnlyaskedofrespondentswhoseorganizationshaveadoptedAIinatleastonefunction.FororganizationsbasedinGreaterChina,n=102;forAsia–Pacific,n=74;fordevelopingmarkets,n=118;forEurope,n=260;andforNorthAmerica,n=190.
2IncludesrespondentsinHongKongSARandTaiwanChina.
3?
IncludesrespondentsinIndia,LatinAmerica,MiddleEast,NorthAfrica,andsub-SaharanAfrica.
OnlyaskedofrespondentswhoseorganizationshaveadoptedAIinatleastonebusinessunitorfunctionwhosaidthattheirorganizationsareusingAIin
sustainabilityefforts;n=302.
8ThestateofAIin2022—andahalfdecadeinreview
Mindthegap:AI
leaderspullingahead
Overthepastfiveyears,wehavetrackedtheleadersinAI—werefertothemasAIhighperformers—andexaminedwhattheydodifferently.Weseemoreindicationsthattheseleadersareexpandingtheir
competitiveadvantagethanwefindevidencethatothersarecatchingup.
First,wehaven’tseenanexpansioninthesizeoftheleadergroup.Forthepastthreeyears,wehavedefinedAIhighperformersasthoseorganizationsthatrespondentssayareseeingthebiggest
bottom-lineimpactfromAIadoption—thatis,20percentormoreofEBITfromAIuse.Theproportionofrespondentsfallingintothatgrouphasremainedsteadyatabout8percent.ThefindingsindicatethatthisgroupisachievingitssuperiorresultsmainlyfromAIboostingtop-linegains,asthey’remorelikelytoreportthatAIisdrivingrevenuesratherthanreducingcosts,thoughtheydoreportAIdecreasing
costsaswell.
Next,highperformersaremorelikelythanotherstofollowcorepracticesthatunlockvalue,such
aslinkingtheirAIstrategytobusinessoutcomes.3Alsoimportant,theyareengagingmoreoften
in“frontier”practicesthatenableAIdevelopmentanddeploymentatscale,orwhatsomecallthe
“industrializationofAI.”Forexample,leadersaremorelikelytohaveadataarchitecturethatismodularenoughtoaccommodatenewAIapplicationsrapidly.Theyalsooftenautomatemostdata-related
processes,whichcanbothimproveefficiencyinAIdevelopmentandexpandthenumberofapplicationstheycandevelopbyprovidingmorehigh-qualitydatatofeedintoAIalgorithms.AndAIhighperformersare1.6timesmorelikelythanotherorganizationstoengagenontechnicalemployeesincreatingAI
applicationsbyusingemerginglow-codeorno-codeprograms,whichallowcompaniestospeedup
thecreationofAIapplications.Inthepastyear,highperformershavebecomeevenmorelikelythan
otherorganizationstofollowcertainadvancedscalingpractices,suchasusingstandardizedtoolsets
tocreateproduction-readydatapipelinesandusinganend-to-endplatformforAI-relateddatascience,dataengineering,andapplicationdevelopmentthatthey’vedevelopedin-house.
HighperformersmightalsohaveaheadstartonmanagingpotentialAI-relatedrisks,suchaspersonalprivacyandequityandfairness,thatotherorganizationshavenotaddressedyet.Whileoverall,we
haveseenlittlechangeinorganizationsreportingrecognitionandmitigationofAI-relatedriskssincewebeganaskingaboutthemfouryearsago,respondentsfromAIhighperformersaremorelikely
thanotherstoreportthattheyengageinpracticesthatareknowntohelpmitigaterisk.TheseincludeensuringAIanddatagovernance,standardizingprocessesandprotocols,automatingprocessessuchasdataqualitycontroltoremoveerrorsintroducedthroughmanualwork,andtestingthevalidityof
modelsandmonitoringthemovertimeforpotentialissues.
3AllquestionsaboutAI-relatedstrengthsandpracticeswereaskedonlyofthe744respondentswhosaidtheirorganizationshadadoptedAIinatleastonefunction,n=744.
ThestateofAIin2022—andahalfdecadeinreview9
OrganizationsseeingthehighestreturnsfromAIaremorelikelytofollowstrategy,data,models,tools,technology,andtalentbestpractices.
Shareofrespondentsreportingtheirorganizationsengageineachpractice,1%ofrespondents
Strategy
Data
Models,tools,andtech
Talentandwaysofworking
HavearoadmapthatclearlyprioritizesAIinitiativeslinkedtobusinessvalueacrossorganization
HaveanAIstrategythatisalignedwiththebroadercorporatestrategyandgoals
Seniormanagementthatisfullyalignedandcommittedtoorganization’sAIstrategy
HaveaclearlydefinedAIvisionandstrategy
AppointedacredibleleaderofAIinitiativeswhoisempoweredtomovethemforwardincollaborationwithpeersacrossbusinessunitsandfunctions
Systematicallytrackacomprehensivesetofwell-de?nedKPIstomeasuretheincrementalimpactofAIinitiatives
HaveaclearframeworkforAIgovernancethatcoverseverystepofthemodeldevelopmentprocess
AllotherrespondentsAIhighperformers2
0
20
60
80
40
100
Strategy
Data
Models,tools,andtech
Talentandwaysofworking
AllotherrespondentsAIhighperformers2
HaveabilitytointegratedataintoAImodelsasquicklyasneeded(eg,innearrealtime)
Integratestructuredinternaldata(eg,adatalakethatcontainscustomerdataacrossbusinessunits)touseinAIinitiatives
Integrateexternaldata(eg,opensource,purchased)touseinAIinitiatives
Integrateunstructuredinternaldata(eg,textualcall-centerlogs)touseinAIinitiatives
GeneratesyntheticdatatotrainAImodelswhenthereareinsufficientnaturaldatasets
HaveamodularenoughdataarchitecturetorapidlyaccommodatetheneedsofnewAIusecases
Automatemostdata-relatedprocesses(eg,datalabeling,dataqualitycontrol)
HavescalableinternalprocessesforlabelingAItrainingdata
12
PracticesshownherearerepresentativeofthosewiththehighestdeltasbetweenAIhighperformersandotherrespondents.Notallpracticesareshown.Respondentswhosaidthatatleast20percentoftheirorganizations’EBITin2021wasattributabletotheiruseofAI.
10ThestateofAIin2022—andahalfdecadeinreview
OrganizationsseeingthehighestreturnsfromAIaremorelikelytofollowstrategy,data,models,tools,technology,andtalentbestpractices.
Shareofrespondentsreportingtheirorganizationsengageineachpractice,1%ofrespondents
Strategy
Data
Models,tools,andtech
Talentandwaysofworking
DevelopAImodelsthatcanprovideaccurate,usableresultsleveragingsmalleramountsofdata(ie,“smalldata”)
RegularlyrefreshAImodelsbasedonclearlydefinedcriteriaforwhenandwhytodoso
Developedin-housetheend-to-endplatformusedforAI-relateddatascience,dataengineering,andapplicationdevelopment
Useastandardizedtoolsettocreateproduction-readydatapipelines
Developmodularcomponents(eg,datamodellayers,datapipelines)sotheycanbereusedinAIapplications
RefreshAI/machinelearningtechstackatleastannuallytotakeadvantageofthelatesttechnologicaladvances
AutomatethefulllifecycleforAImodeldevelopment(eg,fromdataingestionandqualitycontrolthroughmodelmonitoring)
Usetheorganization’sownhigh-performancecomputingclusterforAIworkloads
AllotherrespondentsAIhighperformers2
0
20
60
80
40
100
Strategy
Data
Models,tools,andtech
Talentandwaysofworking
AllotherrespondentsAIhighperformers2
TakeafulllifecycleapproachtodevelopinganddeployingAImodels
IntegrateAItechnologiesintobusinessprocesses(eg,day-to-dayoperations,employeeworkflows)
TeamsfordatascienceandAIdesignanddevelopmentcollaboratetobuildandimproveAIapplications
Havewell-definedcapability-buildingprogramstodeveloptechnologypersonnels’AIskills
TrainnontechnicalpersonneltouseAItoimprovedecisionmaking
AIdevelopmentteamsfollowstandardprotocols(eg,toolframeworks,developmentprocesses)forbuildinganddeliveringAItools
0
20
60
80
40
100
12
PracticesshownherearerepresentativeofthosewiththehighestdeltasbetweenAIhighperformersandotherrespondents.Notallpracticesareshown.Respondentswhosaidthatatleast20percentoftheirorganizations’EBITin2021wasattributabletotheiruseofAI.
ThestateofAIin2022—andahalfdecadeinreview11
Investmentisyetanotherareathatcouldcontributetothewideningofthegap:AIhighperformersare
poisedtocontinueoutspendingotherorganizationsonAIefforts.Eventhoughrespondentsatthose
leadingorganizationsarejustaslikelyasotherstosaythey’llincreaseinvestmentsinthefuture,they’re
spendingmorethanothersnow,meaningthey’llbeincreasingfromabasethatisahigherpercentageof
revenues.RespondentsatAIhighperformersarenearlyeighttimesmorelikelythantheirpeerstosaytheirorganizationsspendatleast20percentoftheirdigital-technologybudgetsonAI-relatedtechnologies.
Andthesedigitalbudgetsmakeupamuchlargerproportionoftheirenterprisespend:respondentsatAIhighperformersareoverfivetimesmorelikelythanotherrespondentstoreportthattheirorganizationsspendmorethan20percentoftheirenterprise-widerevenueondigitaltechnologies.
Finally,allofthismaybegivingAIhighperformersalegupinattractingAItalent.ThereareindicationsthattheseorganizationshavelessdifficultyhiringforrolessuchasAIdatascientistanddataengineer.RespondentsfromorganizationsthatarenotAIhighperformerssayfillingthoseroleshasbeen“verydifficult”muchmoreoftenthanrespondentsfromAIhighperformersdo.
Thebottomline:highperformersarealreadywellpositionedforsustainedAIsuccess,improvedefficiency
innewAIdevelopment,andaresultinglymoreattractiveenvironmentfortalent.Thegoodnewsfororganizationsoutsidetheleadergroupisthatthere’saclearblueprintofbestpracticesforsuccess.
RespondentsatAIhighperformersarenearly
eighttimesmorelikelythantheirpeerstosaytheirorganizationsspendatleast20percentoftheir
digital-technologybudgetsonAI-relatedtechnologies.
12ThestateofAIin2022—andahalf-decadeinreview
McKinseycommentary
BryceHall
Associatepartner
Overtheyearsofourresearch,we’vecontinuedtorefineourunderstandingofthespecific
practicesthatleadingcompaniesaredoingwellandthecapabilitiestheyhaveinplacetocapturevaluefromAI.Recently,anewsetof“frontier”practiceshasemergedasorganizationsshiftfromexperimentingwithAItoindustrializingit.Theseincludemachinelearningoperations(MLOps)
practicessuchasassetization,orturningelementslikecodeintoreusableassetsthatcanbeappliedoverandoverindifferentbusinessapplications.
Butovertheyears,we’vealsoconsistentlyseenasetoffoundationalpracticesthatthese
organizationsaregettingright.Throughourwork,we’velearnednottodescribetheseas“basic”practices,becausetheyaresomeofthemostdifficulttoimplement.Manyoftheseinvolvethe
peopleelementsthatneedtobeinplaceforcompaniestoadoptAIsuccessfully,suchashavingaclearunderstandingofwhatspecifictechtalentrolesareneededandsuccessfullyintegratingAIintobusinessprocessesanddecisionmaking.Asproveninmanycases,AIenginesandpeopletogethercancreatemuchmorevaluethaneithercanindividually.
AstheAIfrontieradvances,wecontinuetobeinspiredbysometrulyinnovativeapplicationsof
AI,suchastheuseofAItoidentifynewdrugs,createhyperpersonalizedrecommendationsfor
consumers,andpowerAIsimulationsindigitaltwinstooptimizeperformanceacrossavariety
ofsettings.AsindividualAIcapabilities,suchasnatural-languageprocessingandgeneration,
continuetoimproveanddemocratize,we’reexcitedtoseeawaveofnewapplicationsemergeandmorecompaniescapturevaluefromAIatscale.
ThestateofAIin2022—andahalfdecadeinreview13
AItalenttales:Newhotroles,continueddiversitywoes
OurfirstdetailedlookattheAItalentpicturesignalsthematurationofAI,surfacesthemostcommonstrategiesorganizationsemployfortalentsourcingandupskilling,andshinesalightonAI’sdiversityproblem—whileshowingyetagainalinkbetweendiversityandsuccess.
Hiringisachallenge,butlesssoforhighperformers
Softwareengineersemerge
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個(gè)人健康保險(xiǎn)合同范本2篇
- 長(zhǎng)沙南方職業(yè)學(xué)院《俄語(yǔ)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度智能倉(cāng)儲(chǔ)物流設(shè)施建設(shè)合同范本3篇
- 2024物業(yè)權(quán)益讓與擔(dān)保合同 權(quán)益方與受讓方協(xié)議
- 思政教育團(tuán)隊(duì)建設(shè)與教師專業(yè)成長(zhǎng)
- 二零二五版集成墻板家裝裝修環(huán)保評(píng)估合同范本3篇
- 2025年校園歷史文化宣傳欄制作與教育推廣合同3篇
- 二零二五年度建筑設(shè)計(jì)創(chuàng)意大賽參賽合同2篇
- 2025年新型農(nóng)業(yè)技術(shù)培訓(xùn)合同范本3篇
- 2025年度定制化鋁材加工與銷售一體化合同4篇
- 自媒體內(nèi)容版權(quán)合同
- 獵聘-2024高校畢業(yè)生就業(yè)數(shù)據(jù)報(bào)告
- 2024虛擬現(xiàn)實(shí)產(chǎn)業(yè)布局白皮書
- 車站值班員(中級(jí))鐵路職業(yè)技能鑒定考試題及答案
- JTG∕T E61-2014 公路路面技術(shù)狀況自動(dòng)化檢測(cè)規(guī)程
- 高中英語(yǔ)短語(yǔ)大全(打印版)
- 軟件研發(fā)安全管理制度
- 三位數(shù)除以兩位數(shù)-豎式運(yùn)算300題
- 寺院消防安全培訓(xùn)課件
- 比摩阻-管徑-流量計(jì)算公式
- GB/T 42430-2023血液、尿液中乙醇、甲醇、正丙醇、丙酮、異丙醇和正丁醇檢驗(yàn)
評(píng)論
0/150
提交評(píng)論