重慶工商職業(yè)學(xué)院《Photoshop》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
重慶工商職業(yè)學(xué)院《Photoshop》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
重慶工商職業(yè)學(xué)院《Photoshop》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
重慶工商職業(yè)學(xué)院《Photoshop》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
重慶工商職業(yè)學(xué)院《Photoshop》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁重慶工商職業(yè)學(xué)院

《Photoshop》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺在無人駕駛中的應(yīng)用需要應(yīng)對各種復(fù)雜的環(huán)境和情況。假設(shè)無人駕駛汽車要在惡劣天氣下行駛,以下關(guān)于計算機視覺在無人駕駛中的挑戰(zhàn)的描述,哪一項是不正確的?()A.惡劣天氣會影響圖像的質(zhì)量和清晰度,增加目標(biāo)檢測和識別的難度B.計算機視覺系統(tǒng)需要與其他傳感器(如雷達和超聲波傳感器)融合,以提高在惡劣天氣下的感知能力C.深度學(xué)習(xí)模型在惡劣天氣條件下的性能會顯著下降,無法正常工作D.針對惡劣天氣,可以通過數(shù)據(jù)增強和模型優(yōu)化等方法提高計算機視覺系統(tǒng)的魯棒性2、在計算機視覺的圖像檢索任務(wù)中,根據(jù)用戶提供的圖像或特征在數(shù)據(jù)庫中查找相似的圖像。假設(shè)要從一個大型圖像庫中找到與給定圖像相似的圖片,以下關(guān)于圖像檢索方法的描述,正確的是:()A.基于圖像的顏色和紋理特征進行檢索能夠滿足所有的檢索需求B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)提取的特征在圖像檢索中不如手工設(shè)計的特征有效C.考慮圖像的語義信息和高層特征可以提高圖像檢索的準(zhǔn)確性和相關(guān)性D.圖像檢索的速度和效率不受數(shù)據(jù)庫大小和特征維度的影響3、假設(shè)要開發(fā)一個能夠?qū)χ讣y進行識別和認(rèn)證的計算機視覺系統(tǒng),以下哪種特征提取和匹配方法可能在指紋識別中具有較高的準(zhǔn)確性?()A.細(xì)節(jié)點提取B.方向場提取C.紋理特征提取D.以上都是4、在計算機視覺的圖像增強任務(wù)中,假設(shè)要提高一張低光照圖像的質(zhì)量。以下關(guān)于圖像增強方法的描述,正確的是:()A.直方圖均衡化能夠均勻分布圖像的灰度級,但可能會導(dǎo)致細(xì)節(jié)丟失B.基于濾波的方法可以有效地去除噪聲,但同時也會模糊圖像的邊緣C.伽馬校正只適用于校正過亮的圖像,對于低光照圖像效果不佳D.所有的圖像增強方法都能夠在不引入任何失真的情況下提高圖像質(zhì)量5、假設(shè)要構(gòu)建一個能夠識別人臉表情的計算機視覺系統(tǒng),用于情感分析和人機交互??紤]到表情的細(xì)微變化和個體差異,以下哪種模型架構(gòu)可能更適合處理這種復(fù)雜的任務(wù)?()A.多層感知機B.卷積神經(jīng)網(wǎng)絡(luò)C.循環(huán)神經(jīng)網(wǎng)絡(luò)D.生成對抗網(wǎng)絡(luò)6、在計算機視覺中,以下哪種方法常用于圖像的語義分割中的多尺度特征融合?()A.特征金字塔B.空洞卷積C.注意力機制D.以上都是7、在計算機視覺的姿態(tài)估計任務(wù)中,需要確定物體在三維空間中的方向和位置。假設(shè)要估計一個機器人手臂的姿態(tài),以實現(xiàn)精確的控制和操作。以下哪種姿態(tài)估計方法在處理這種機械結(jié)構(gòu)時準(zhǔn)確性更高?()A.基于模型的姿態(tài)估計B.基于深度學(xué)習(xí)的姿態(tài)估計C.基于視覺慣性里程計的姿態(tài)估計D.基于幾何約束的姿態(tài)估計8、圖像分割是將圖像細(xì)分為不同的區(qū)域或?qū)ο?。假設(shè)我們需要對醫(yī)學(xué)圖像中的腫瘤進行精確分割,以輔助醫(yī)生進行診斷和治療。在這種對精度要求很高的應(yīng)用中,以下哪種圖像分割方法可能更合適?()A.基于閾值的圖像分割B.基于邊緣檢測的圖像分割C.基于區(qū)域生長的圖像分割D.基于深度學(xué)習(xí)的語義分割算法,如U-Net9、在計算機視覺中,目標(biāo)檢測是一項重要任務(wù)。假設(shè)要在一張包含眾多物體的復(fù)雜圖像中準(zhǔn)確檢測出不同類型的車輛,例如轎車、卡車和摩托車。圖像中的車輛可能具有不同的顏色、大小和姿態(tài),而且背景也較為復(fù)雜。為了實現(xiàn)高精度的車輛檢測,以下哪種方法通常被認(rèn)為是最有效的?()A.基于傳統(tǒng)圖像處理技術(shù),如邊緣檢測和形態(tài)學(xué)操作B.使用基于深度學(xué)習(xí)的目標(biāo)檢測算法,如FasterR-CNNC.采用簡單的模板匹配方法,根據(jù)預(yù)先定義的車輛模板進行匹配D.對圖像進行全局特征提取,然后基于這些特征進行分類10、在計算機視覺的目標(biāo)跟蹤任務(wù)中,持續(xù)跟蹤視頻中的特定目標(biāo)。假設(shè)要跟蹤一個在人群中行走的人,以下關(guān)于目標(biāo)跟蹤方法的描述,哪一項是不正確的?()A.基于濾波的方法,如卡爾曼濾波和粒子濾波,可以預(yù)測目標(biāo)的位置和狀態(tài)B.基于深度學(xué)習(xí)的方法能夠?qū)W習(xí)目標(biāo)的外觀特征,提高跟蹤的準(zhǔn)確性和魯棒性C.目標(biāo)跟蹤過程中,目標(biāo)的外觀變化、遮擋和背景干擾等因素不會對跟蹤結(jié)果產(chǎn)生影響D.結(jié)合多種特征和算法的融合跟蹤方法,可以綜合利用不同方法的優(yōu)勢,提高跟蹤性能11、在計算機視覺中,特征提取是非常關(guān)鍵的一步。假設(shè)我們要從圖像中提取有意義的特征,用于后續(xù)的處理和分析,以下關(guān)于特征提取方法的描述,哪一項是不正確的?()A.SIFT(尺度不變特征變換)和SURF(加速穩(wěn)健特征)是常用的局部特征描述子,對圖像的旋轉(zhuǎn)、縮放和光照變化具有一定的不變性B.HOG(方向梯度直方圖)特征通過計算圖像局部區(qū)域的梯度方向分布來描述圖像,常用于行人檢測C.深度學(xué)習(xí)中的自動特征提取,例如通過卷積神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)到的特征,比手工設(shè)計的特征更具有代表性和判別力D.特征提取的結(jié)果對后續(xù)的圖像處理任務(wù)影響不大,不同的特征提取方法可以得到相似的處理效果12、在計算機視覺中,圖像分類是一項重要任務(wù)。假設(shè)我們要對大量的動物圖片進行分類,將其分為貓、狗、鳥等類別。以下關(guān)于圖像分類方法的描述,哪一項是不準(zhǔn)確的?()A.基于深度學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類任務(wù)中表現(xiàn)出色,能夠自動學(xué)習(xí)圖像的特征B.傳統(tǒng)的機器學(xué)習(xí)方法如支持向量機(SVM)在處理大規(guī)模圖像數(shù)據(jù)時,性能通常不如深度學(xué)習(xí)方法C.圖像分類只需要考慮圖像的顏色和形狀等低層次特征,高層語義信息對分類結(jié)果影響不大D.為了提高分類準(zhǔn)確率,可以使用數(shù)據(jù)增強技術(shù),如旋轉(zhuǎn)、翻轉(zhuǎn)、裁剪等操作來擴充數(shù)據(jù)集13、計算機視覺在工業(yè)檢測中的應(yīng)用越來越廣泛。假設(shè)要檢測電子電路板上的微小缺陷,以下關(guān)于圖像采集設(shè)備的選擇,哪一項是最為關(guān)鍵的?()A.選擇高分辨率的數(shù)碼相機,獲取清晰的圖像B.選用具有大景深的鏡頭,確保整個電路板都清晰成像C.采用高速攝像機,快速采集大量圖像D.選擇價格低廉的圖像采集設(shè)備,降低成本14、在計算機視覺中,目標(biāo)檢測是一項重要的任務(wù)。假設(shè)要開發(fā)一個能夠在城市交通場景中檢測車輛和行人的系統(tǒng)。以下關(guān)于目標(biāo)檢測算法的選擇,哪一項是需要重點考慮的因素?()A.算法的檢測速度,以滿足實時性要求B.算法在小目標(biāo)檢測上的性能,因為車輛和行人在圖像中可能較小C.算法的模型復(fù)雜度,越復(fù)雜的模型效果越好D.算法是否開源,開源的算法更易于使用15、計算機視覺在智能零售中的應(yīng)用可以改善購物體驗和提高運營效率。假設(shè)一個超市需要通過計算機視覺實現(xiàn)自動結(jié)賬和庫存管理。以下關(guān)于計算機視覺在智能零售中的描述,哪一項是不準(zhǔn)確的?()A.可以通過商品識別技術(shù)自動識別顧客購買的商品,實現(xiàn)快速結(jié)賬B.能夠?qū)崟r監(jiān)測貨架上商品的庫存水平,及時提醒補貨C.計算機視覺系統(tǒng)能夠準(zhǔn)確識別所有商品的包裝和標(biāo)簽,不受商品擺放方式和遮擋的影響D.可以分析顧客在店內(nèi)的行為和偏好,為營銷策略提供數(shù)據(jù)支持16、計算機視覺中,以下哪個任務(wù)通常需要對圖像中的目標(biāo)進行定位和分類?()A.圖像生成B.目標(biāo)檢測C.圖像超分辨率D.圖像去噪17、在計算機視覺的圖像修復(fù)任務(wù)中,恢復(fù)圖像中缺失或損壞的部分。假設(shè)要修復(fù)一張老照片中缺失的部分,以下關(guān)于圖像修復(fù)方法的描述,正確的是:()A.基于紋理合成的圖像修復(fù)方法能夠完美恢復(fù)復(fù)雜的結(jié)構(gòu)和細(xì)節(jié)B.深度學(xué)習(xí)中的自編碼器在圖像修復(fù)中無法學(xué)習(xí)到有效的特征表示C.圖像修復(fù)的結(jié)果不受缺失區(qū)域的大小和形狀的影響D.結(jié)合先驗知識和上下文信息的深度學(xué)習(xí)方法可以產(chǎn)生更合理和自然的修復(fù)效果18、計算機視覺中的圖像配準(zhǔn)是將不同時間、不同視角或不同傳感器獲取的圖像進行匹配和對齊。以下關(guān)于圖像配準(zhǔn)的敘述,不正確的是()A.圖像配準(zhǔn)需要找到圖像之間的對應(yīng)點或特征,然后進行變換和對齊B.圖像配準(zhǔn)在醫(yī)學(xué)圖像分析、遙感圖像處理和三維重建等領(lǐng)域有著廣泛的應(yīng)用C.圖像配準(zhǔn)的精度和魯棒性受到圖像質(zhì)量、噪聲和幾何變形等因素的影響D.圖像配準(zhǔn)是一個簡單的過程,不需要復(fù)雜的算法和優(yōu)化19、計算機視覺中的眼底圖像分析對于眼科疾病的診斷具有重要意義。以下關(guān)于眼底圖像分析的描述,不準(zhǔn)確的是()A.可以檢測眼底的病變、血管異常和視網(wǎng)膜結(jié)構(gòu)的改變B.深度學(xué)習(xí)方法在眼底圖像分析中能夠自動提取特征和進行疾病分類C.眼底圖像分析需要高質(zhì)量的圖像數(shù)據(jù)和專業(yè)的醫(yī)學(xué)知識標(biāo)注D.眼底圖像分析技術(shù)已經(jīng)非常成熟,能夠替代醫(yī)生的診斷20、計算機視覺中的圖像超分辨率技術(shù)用于提高圖像的分辨率。假設(shè)要將一張低分辨率的圖像恢復(fù)成高分辨率圖像,以下關(guān)于圖像超分辨率方法的描述,正確的是:()A.基于插值的圖像超分辨率方法能夠生成清晰逼真的高分辨率圖像B.深度學(xué)習(xí)中的生成對抗網(wǎng)絡(luò)(GAN)在圖像超分辨率任務(wù)中無法發(fā)揮作用C.圖像超分辨率的效果不受原始低分辨率圖像的質(zhì)量和內(nèi)容的限制D.結(jié)合先驗知識和深度學(xué)習(xí)的方法可以改善圖像超分辨率的效果21、計算機視覺中的動作識別是對視頻中的人體動作進行分類和理解。假設(shè)我們要分析一段體育比賽的視頻,識別其中運動員的各種動作,以下哪種方法能夠有效地捕捉動作的時空特征?()A.基于手工特征和分類器的方法B.基于深度學(xué)習(xí)的時空卷積網(wǎng)絡(luò)C.基于光流和軌跡的方法D.基于隱馬爾可夫模型的方法22、在計算機視覺的行人檢測任務(wù)中,假設(shè)要在一個擁擠的街道場景中準(zhǔn)確檢測出行人,場景中存在光照變化、人群遮擋和復(fù)雜背景。以下哪種特征表示方法在這種情況下可能更具魯棒性?()A.基于形狀的特征,如行人的輪廓B.基于顏色的特征,如行人衣服的顏色C.基于深度學(xué)習(xí)的特征,通過卷積神經(jīng)網(wǎng)絡(luò)自動學(xué)習(xí)D.不提取任何特征,直接對原始圖像進行檢測23、在計算機視覺的場景理解任務(wù)中,假設(shè)要理解一個室內(nèi)場景的布局和物體關(guān)系。以下關(guān)于利用深度學(xué)習(xí)模型的方法,哪一項是不太恰當(dāng)?shù)??()A.使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)提取圖像特征B.運用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)處理場景的序列信息C.直接使用未經(jīng)訓(xùn)練的神經(jīng)網(wǎng)絡(luò),期望其自動學(xué)習(xí)場景理解D.結(jié)合CNN和RNN,構(gòu)建端到端的場景理解模型24、計算機視覺中的行人重識別任務(wù)是在不同攝像頭中識別出特定的行人。假設(shè)要在一個大型火車站中尋找一個走失的兒童。以下關(guān)于行人重識別的描述,哪一項是不準(zhǔn)確的?()A.可以利用行人的服裝顏色、款式和攜帶物品等特征進行重識別B.深度學(xué)習(xí)中的度量學(xué)習(xí)方法可以學(xué)習(xí)行人的特征表示,提高重識別的準(zhǔn)確率C.行人重識別不受行人姿態(tài)變化和攝像頭視角差異的影響D.可以通過構(gòu)建大規(guī)模的行人數(shù)據(jù)集進行訓(xùn)練,提升模型的泛化能力25、計算機視覺中的醫(yī)學(xué)圖像分析中,假設(shè)要對腫瘤進行檢測和分割。以下關(guān)于醫(yī)學(xué)圖像分析方法的描述,正確的是:()A.由于醫(yī)學(xué)圖像的特殊性,傳統(tǒng)的計算機視覺方法無法應(yīng)用于醫(yī)學(xué)圖像分析B.深度學(xué)習(xí)方法在醫(yī)學(xué)圖像分析中能夠準(zhǔn)確檢測腫瘤,但對小腫瘤容易漏檢C.多模態(tài)醫(yī)學(xué)圖像融合可以提供更豐富的信息,但融合算法復(fù)雜,效果不穩(wěn)定D.醫(yī)學(xué)圖像分析的結(jié)果不需要經(jīng)過醫(yī)生的審核和確認(rèn),可以直接用于診斷二、簡答題(本大題共4個小題,共20分)1、(本題5分)說明計算機視覺在港口管理中的應(yīng)用。2、(本題5分)說明計算機視覺在租賃行業(yè)中的應(yīng)用。3、(本題5分)說明計算機視覺在手術(shù)導(dǎo)航中的應(yīng)用。4、(本題5分)計算機視覺中如何檢測圖像中的直線和圓?三、分析題(本大題共5個小題,共25分)1、(本題5分)分析某旅游景區(qū)的導(dǎo)覽地圖設(shè)計,探討其如何在圖形表達、色彩區(qū)分、信息布局等方面方便游客游覽,展示景區(qū)特色。2、(本題5分)觀察某珠寶品牌的定制服務(wù)宣傳設(shè)計,分析其如何通過高端、個性化的視覺表現(xiàn),突出定制的獨特魅力和價值。3、(本題5分)研究某化妝品品牌的店面設(shè)計,包括店面外觀、陳列設(shè)計和燈光設(shè)計,分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論