版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁(yè),總=sectionpages22頁(yè)第=page11頁(yè),總=sectionpages11頁(yè)2025年北師大版高一數(shù)學(xué)上冊(cè)階段測(cè)試試卷含答案考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五六總分得分評(píng)卷人得分一、選擇題(共7題,共14分)1、且則銳角為A.B.C.D.2、在下列區(qū)間中,函數(shù)的一個(gè)零點(diǎn)所在的區(qū)間為()A.(0,1)B.(1,2)C.(2,3)D.(3,4)3、若x0是方程x+lgx=2的解,則x0屬于區(qū)間()A.B.C.D.4、上海世博會(huì)期間;某日13時(shí)至21時(shí)累計(jì)入園人數(shù)的折線圖如圖所示,那么在13時(shí)~14時(shí),14時(shí)~15時(shí),,20時(shí)~21時(shí)八個(gè)時(shí)段中,入園人數(shù)最多的時(shí)段是()
A.13時(shí)~14時(shí)B.16時(shí)~17時(shí)C.18時(shí)~19時(shí)D.19時(shí)~20時(shí)5、在半徑為8cm的圓中,的圓心角所對(duì)的弧長(zhǎng)()A.B.C.D.6、設(shè)f(x)=a鈭?32x+1(x隆脢R)
是奇函數(shù),則(
)
A.a=32
且f(x)
為增函數(shù)B.a=鈭?1
且f(x)
為增函數(shù)C.a=32
且f(x)
為減函數(shù)D.a=鈭?1
且f(x)
為減函數(shù)7、已知定義域?yàn)镽
的偶函數(shù)f(x)
在(鈭?隆脼,0]
上是減函數(shù),且f(12)=2
則不等式f(log4x)>2
的解集為(
)
A.(0,12)隆脠(2,+隆脼)
B.(2,+隆脼)
C.(0,22)隆脠(2,+隆脼)
D.(0,22)
評(píng)卷人得分二、填空題(共5題,共10分)8、下列命題中所有正確的序號(hào)是.①函數(shù)的圖像一定過定點(diǎn)②函數(shù)的定義域是則函數(shù)的定義域?yàn)棰垡阎?且=8,則=-8;④為奇函數(shù)。9、已知約束條件為則目標(biāo)函數(shù)的最小值是_______.10、【題文】已知函數(shù)f(x)=則滿足不等式f(f(x))>1的x的取值范圍是________.11、【題文】已知函數(shù)
(1)若則的定義域?yàn)開___;
(2)若在區(qū)間上是減函數(shù),則實(shí)數(shù)的取值范圍是____.12、已知向量向量=(x,3),且則x=______.評(píng)卷人得分三、證明題(共5題,共10分)13、如圖;已知AB是⊙O的直徑,P是AB延長(zhǎng)線上一點(diǎn),PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:
(1)AD=AE
(2)PC?CE=PA?BE.14、如圖;過圓O外一點(diǎn)D作圓O的割線DBA,DE與圓O切于點(diǎn)E,交AO的延長(zhǎng)線于F,AF交圓O于C,且AD⊥DE.
(1)求證:E為的中點(diǎn);
(2)若CF=3,DE?EF=,求EF的長(zhǎng).15、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點(diǎn),DF⊥BE,垂足為F,CF交AD于點(diǎn)G.
求證:(1)∠CFD=∠CAD;
(2)EG<EF.16、已知D是銳角△ABC外接圓劣弧的中點(diǎn);弦AD與邊BC相交于點(diǎn)E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.17、已知G是△ABC的重心,過A、G的圓與BG切于G,CG的延長(zhǎng)線交圓于D,求證:AG2=GC?GD.評(píng)卷人得分四、計(jì)算題(共4題,共40分)18、Rt△ABC中,若∠C=90°,a=15,b=8,則sinA+sinB=____.19、在Rt△ABC中,∠A=90°,如果BC=10,sinB=0.6,那么AC=____.20、(2009?瑞安市校級(jí)自主招生)如圖,把一個(gè)棱長(zhǎng)為3的正方體的每個(gè)面等分成9個(gè)小正方形,然后沿每個(gè)面正中心的一個(gè)正方形向里挖空(相當(dāng)于挖去了7個(gè)小正方體),所得到的幾何體的表面積是____.21、化簡(jiǎn):.評(píng)卷人得分五、作圖題(共3題,共15分)22、如圖A、B兩個(gè)村子在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來(lái)水,鋪設(shè)管道費(fèi)用為每千米2000元,請(qǐng)你在CD上選擇水廠位置O,使鋪設(shè)管道的費(fèi)用最省,并求出其費(fèi)用.23、某潛艇為躲避反潛飛機(jī)的偵查,緊急下潛50m后,又以15km/h的速度,沿北偏東45°前行5min,又以10km/h的速度,沿北偏東60°前行8min,最后擺脫了反潛飛機(jī)的偵查.試畫出潛艇整個(gè)過程的位移示意圖.24、繪制以下算法對(duì)應(yīng)的程序框圖:
第一步;輸入變量x;
第二步,根據(jù)函數(shù)f(x)=
對(duì)變量y賦值;使y=f(x);
第三步,輸出變量y的值.評(píng)卷人得分六、綜合題(共3題,共27分)25、如圖1;△ABC與△EFA為等腰直角三角形,AC與AE重合,AB=EF=9,∠BAC=∠AEF=90°,固定△ABC,將△EFA繞點(diǎn)A順時(shí)針旋轉(zhuǎn),當(dāng)AF邊與AB邊重合時(shí),旋轉(zhuǎn)中止.不考慮旋轉(zhuǎn)開始和結(jié)束時(shí)重合的情況,設(shè)AE;AF(或它們的延長(zhǎng)線)分別交BC(或它的延長(zhǎng)線)于G、H點(diǎn),如圖2.
(1)問:在圖2中,始終與△AGC相似的三角形有____及____;
(2)設(shè)CG=x;BH=y,GH=z,求:
①y關(guān)于x的函數(shù)關(guān)系式;
②z關(guān)于x的函數(shù)關(guān)系式;(只要求根據(jù)第(1)問的結(jié)論說(shuō)明理由)
(3)直接寫出:當(dāng)x為何值時(shí),AG=AH.26、設(shè)直線kx+(k+1)y-1=0與坐標(biāo)軸所圍成的直角三角形的面積為Sk,則S1+S2++S2009=____.27、已知拋物線y=-x2+2mx-m2-m+2.
(1)判斷拋物線的頂點(diǎn)與直線L:y=-x+2的位置關(guān)系;
(2)設(shè)該拋物線與x軸交于M;N兩點(diǎn);當(dāng)OM?ON=4,且OM≠ON時(shí),求出這條拋物線的解析式;
(3)直線L交x軸于點(diǎn)A,(2)中所求拋物線的對(duì)稱軸與x軸交于點(diǎn)B.那么在對(duì)稱軸上是否存在點(diǎn)P,使⊙P與直線L和x軸同時(shí)相切?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.參考答案一、選擇題(共7題,共14分)1、D【分析】【解析】試題分析:根據(jù)題意,由于且那么則有由于角為銳角,那么可知銳角=故選D.考點(diǎn):向量的共線【解析】【答案】D2、B【分析】試題分析:函數(shù)的零點(diǎn)就是函數(shù)的圖象與函數(shù)交點(diǎn)的橫坐標(biāo),畫出函數(shù)圖象,觀察交點(diǎn)的橫坐標(biāo);其中一個(gè)交點(diǎn)在考點(diǎn):1.函數(shù)的圖象;2.函數(shù)的零點(diǎn);【解析】【答案】B3、C【分析】【解答】令函數(shù)因?yàn)樗院瘮?shù)的零點(diǎn)所在的大致區(qū)間是
【分析】函數(shù)的圖像在閉區(qū)間是連續(xù)不斷的,且則函數(shù)在上有零點(diǎn)。零點(diǎn)存在性定理只能判斷函數(shù)在上有零點(diǎn)但沒有判斷出零點(diǎn)的個(gè)數(shù)。4、B【分析】【解答】由圖知;在13時(shí)~14時(shí)入園人數(shù)分別是5萬(wàn),14時(shí)-16時(shí)入園人數(shù)低于3萬(wàn);16時(shí)-17時(shí),入園人數(shù)接近10萬(wàn),最多,故選B。
【分析】簡(jiǎn)單題,注意圖中累計(jì)數(shù),觀察折線的“陡峭”程度。5、D【分析】解:扇形的弧長(zhǎng)為l,圓心角大小為α=,半徑為r=8cm;
則l=rα=____×8=cm.
故選:D.
直接利用弧長(zhǎng)公式即可計(jì)算求解.
本題主要考查了弧長(zhǎng)公式的應(yīng)用,屬于基礎(chǔ)題.【解析】【答案】D6、A【分析】解:隆脽f(x)=a鈭?32x+1
是R
上的奇函數(shù);
隆脿f(0)=a鈭?32=0
隆脿a=32
又y=2x+1
為R
上的增函數(shù);
隆脿y=12x+1
為R
上的減函數(shù),y=鈭?12x+1
為R
上的增函數(shù);
隆脿f(x)=32鈭?12x+1
為R
上的增函數(shù).
故選A.
由于f(x)
為R
上的奇函數(shù);故f(0)=0
從而可求得a
再結(jié)合其單調(diào)性即可得到答案.
本題考查函數(shù)奇偶性的性質(zhì)及單調(diào)性,著重考查函數(shù)奇偶性與單調(diào)性的定義及判斷,屬于中檔題.【解析】A
7、A【分析】解:由題意知不等式f(log4x)>2
即f(log4x)>f(12)
又偶函數(shù)f(x)
在(鈭?隆脼,0]
上是減函數(shù);
隆脿f(x)
在[0,+隆脼)
上是增函數(shù),隆脿log4x>12=log42
或log4x<鈭?12=log412
隆脿0<x<12
或x>2
故選A
.
由題意知不等式即f(log4x)>f(12)
即log4x>12
或log4x<鈭?12
利用對(duì)數(shù)函數(shù)的定義域和單調(diào)性。
求出不等式的解集.
本題考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,對(duì)數(shù)函數(shù)的單調(diào)性及特殊點(diǎn).【解析】A
二、填空題(共5題,共10分)8、略
【分析】試題分析:函數(shù)的定義域是則函數(shù)的定義域?yàn)楣盛诓粚?duì);在③中,所以故③不對(duì).考點(diǎn):函數(shù)的性質(zhì).【解析】【答案】①④9、略
【分析】【解析】
作出可行域與目標(biāo)函數(shù),可得經(jīng)過點(diǎn)()時(shí),有最小值為【解析】【答案】10、略
【分析】【解析】當(dāng)x≤0時(shí),2x∈(0,1],f(f(x))=log22x=x>1,不符合;當(dāng)02x≤0,f(f(x))=2log2x=x>1,不符合;當(dāng)x>1時(shí),log2x>0,f(f(x))=log2(log2x)>1,解得x>4.【解析】【答案】(4,+∞)11、略
【分析】【解析】
試題分析:(1)由求解即可得到故的定義域?yàn)椋?)當(dāng)時(shí),在其定義域內(nèi)單調(diào)遞減,由復(fù)合函數(shù)的單調(diào)性可知要使在區(qū)間單調(diào)遞減,須滿足即求解得當(dāng)時(shí),由復(fù)合函數(shù)的單調(diào)性可知要使在區(qū)間單調(diào)遞減,則須滿足函數(shù)在單調(diào)遞增且最小值必須大于0,此時(shí)綜上可知,
考點(diǎn):1.函數(shù)的定義域;2.函數(shù)的單調(diào)性;3.分類討論的思想.【解析】【答案】(1)(2)12、略
【分析】解:因?yàn)橄蛄肯蛄?(x,3),且根據(jù)向量共線的充要條件得4×3=2x,x=6
故答案為:6.
根據(jù)所給的兩個(gè)向量的坐標(biāo)和兩個(gè)向量平行的充要條件;得到關(guān)于x的方程,解方程即可得到要求的x的值.
本題考查兩個(gè)向量平行的充要條件的坐標(biāo)形式,是一個(gè)基礎(chǔ)題.【解析】6三、證明題(共5題,共10分)13、略
【分析】【分析】(1)連AC;BC;OC,如圖,根據(jù)切線的性質(zhì)得到OC⊥PD,而AD⊥PC,則OC∥PD,得∠ACO=∠CAD,則∠DAC=∠CAO,根據(jù)三角形相似的判定易證得Rt△ACE≌Rt△ACD;
即可得到結(jié)論;
(2)根據(jù)三角形相似的判定易證Rt△PCE∽R(shí)t△PAD,Rt△EBC∽R(shí)t△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到結(jié)論.【解析】【解答】證明:(1)連AC、BC,OC,如圖,
∵PC是⊙O的切線;
∴OC⊥PD;
而AD⊥PC;
∴OC∥PD;
∴∠ACO=∠CAD;
而∠ACO=∠OAC;
∴∠DAC=∠CAO;
又∵CE⊥AB;
∴∠AEC=90°;
∴Rt△ACE≌Rt△ACD;
∴CD=CE;AD=AE;
(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;
∴Rt△PCE∽R(shí)t△PAD;
∴PC:PA=CE:AD;
又∵AB為⊙O的直徑;
∴∠ACB=90°;
而∠DAC=∠CAO;
∴Rt△EBC∽R(shí)t△DCA;
∴BE:CE=CD:AD;
而CD=CE;
∴BE:CE=CE:AD;
∴BE:CE=PC:PA;
∴PC?CE=PA?BE.14、略
【分析】【分析】要證E為中點(diǎn),可證∠EAD=∠OEA,利用輔助線OE可以證明,求EF的長(zhǎng)需要借助相似,得出比例式,之間的關(guān)系可以求出.【解析】【解答】(1)證明:連接OE
OA=OE=>∠OAE=∠OEA
DE切圓O于E=>OE⊥DE
AD⊥DE=>∠EAD+∠AED=90°
=>∠EAD=∠OEA
?OE∥AD
=>E為的中點(diǎn).
(2)解:連CE;則∠AEC=90°,設(shè)圓O的半徑為x
∠ACE=∠AED=>Rt△ADE∽R(shí)t△AEC=>
DE切圓O于E=>△FCE∽△FEA
∴,
∴
即DE?EF=AD?CF
DE?EF=;CF=3
∴AD=
OE∥AD=>=>=>8x2+7x-15=0
∴x1=1,x2=-(舍去)
∴EF2=FC?FA=3x(3+2)=15
∴EF=15、略
【分析】【分析】(1)連接AF,并延長(zhǎng)交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點(diǎn)共圓即可;
(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點(diǎn)共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長(zhǎng)交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
則=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四點(diǎn)共圓;
∴∠CFD=∠CAD.
(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四點(diǎn)共圓;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.16、略
【分析】【分析】(1)求出∠BAD=∠CAD,根據(jù)角平分線性質(zhì)推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根據(jù)等腰三角形性質(zhì)求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;
(3)BF過圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F為AC中點(diǎn);
∴cosC==.
答:cosC的值是.
(3)BF過圓心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.17、略
【分析】【分析】構(gòu)造以重心G為頂點(diǎn)的平行四邊形GBFC,并巧用A、D、F、C四點(diǎn)共圓巧證乘積.延長(zhǎng)GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點(diǎn)共圓,從而GA、GF=GC?GD.于是GA2=GC?GD.【解析】【解答】證明:延長(zhǎng)GP至F;使PF=PG,連接AD,BF,CF;
∵G是△ABC的重心;
∴AG=2GP;BP=PC;
∵PF=PG;
∴四邊形GBFC是平行四邊形;
∴GF=2GP;
∴AG=GF;
∵BG∥CF;
∴∠1=∠2
∵過A;G的圓與BG切于G;
∴∠3=∠D;
又∠2=∠3;
∴∠1=∠2=∠3=∠D;
∴A;D、F、C四點(diǎn)共圓;
∴GA;GF=GC?GD;
即GA2=GC?GD.四、計(jì)算題(共4題,共40分)18、略
【分析】【分析】根據(jù)勾股定理求出斜邊的長(zhǎng),再分別求出∠A,∠B的正弦值,然后求出它們的和即可.【解析】【解答】解:由勾股定理有:c===17;
于是sinA=;sinB=;
所以sinA+sinB=.
故答案是:.19、略
【分析】【分析】根據(jù)sinB是由AC與BC之比得到的,把相關(guān)數(shù)值代入即可求得AC的值.【解析】【解答】解:∵sinB=;
∴AC=BC×sinB=10×0.6=6.
故答案為6.20、略
【分析】【分析】如圖所示,一、棱長(zhǎng)為3的正方體的每個(gè)面等分成9個(gè)小正方形,那么每個(gè)小正方形的邊長(zhǎng)是1,所以每個(gè)小正方面的面積是1;二、正方體的一個(gè)面有9個(gè)小正方形,挖空后,這個(gè)面的表面積增加了4個(gè)小正方形,減少了1個(gè)小正方形,即:每個(gè)面有12個(gè)小正方形,6個(gè)面就是6×12=72個(gè),那么幾何體的表面積為72×1=72.【解析】【解答】解:如圖所示;周邊的六個(gè)挖空的正方體每個(gè)面增加4個(gè)正方形,減少了1個(gè)小正方形,則每個(gè)面的正方形個(gè)數(shù)為12個(gè),則表面積為12×6×1=72.
故答案為:72.21、解:原式===﹣1【分析】【分析】利用誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式即可化簡(jiǎn)得解.五、作圖題(共3題,共15分)22、略
【分析】【分析】作點(diǎn)A關(guān)于河CD的對(duì)稱點(diǎn)A′,當(dāng)水廠位置O在線段AA′上時(shí),鋪設(shè)管道的費(fèi)用最?。窘馕觥俊窘獯稹拷猓鹤鼽c(diǎn)A關(guān)于河CD的對(duì)稱點(diǎn)A′;連接A′B,交CD與點(diǎn)O,則點(diǎn)O即為水廠位置,此時(shí)鋪設(shè)的管道長(zhǎng)度為OA+OB.
∵點(diǎn)A與點(diǎn)A′關(guān)于CD對(duì)稱;
∴OA′=OA;A′C=AC=1;
∴OA+OB=OA′+OB=A′B.
過點(diǎn)A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;
∴在Rt△A′BE中,A′B==5(千米);
∴2000×5=10000(元).
答:鋪設(shè)管道的最省費(fèi)用為10000元.23、解:由題意作示意圖如下;
【分析】【分析】由題意作示意圖。24、解:程序框圖如下:
【分析】【分析】該函數(shù)是分段函數(shù),當(dāng)x取不同范圍內(nèi)的值時(shí),函數(shù)解析式不同,因此當(dāng)給出一個(gè)自變量x的值時(shí),必須先判斷x的范圍,然后確定利用哪一段的解析式求函數(shù)值,因?yàn)楹瘮?shù)解析式分了三段,所以判斷框需要兩個(gè),即進(jìn)行兩次判斷,于是,即可畫出相應(yīng)的程序框圖.六、綜合題(共3題,共27分)25、略
【分析】【分析】(1)△HGA;△HAB,求出∠H=∠GAC,∠AGC=∠AGC,即可推出△AGC∽△HGA;根據(jù)∠B=∠ACG=45°,∠GAC=∠H推出△AGC∽△HAB即可;
(2)①根據(jù)∵△AGC∽△HAB,得出=,求出y=;②在Rt△BAC中,由勾股定理求出BC=9;代入GH=BH-(BC-GC)求出即可;
(3)由△HGA∽△HAB得出HB=AB=9,由△HGA∽△GCA得出AC=CG=9,推出BG=HC,即可得出答案.【解析】【解答】解:(1)△HGA;△HAB;
理由是:∵△ABC與△EFA為等腰直角三角形;AC與AE重合,AB=EF,∠BAC=∠AEF=90°;
∴∠B=∠ACB=∠GAF=45°;
∴∠ACB=∠H+∠HAC=45°;∠GAC+∠HAC=∠GAF=45°;
∴∠H=∠GAC;
∵∠AGC=∠AGC;
∴△AGC∽△HGA;
∵∠B=∠ACG=45°;∠GAC=∠H;
∴△AGC∽△HAB;
(2)①如圖2;∵△AGC∽△HAB;
∴=;
∴=;
∴y=;
②在Rt△BAC中,∠BAC=90°,AC=AB=9,由勾股定理得:BC=9;
∴GH=BH-(BC-GC)=y-(9-x);
∴z=+x-9;
(3)∵∠GAH=45°是等腰三角形的頂角;
如圖;∵由△HGA∽△HAB知:HB=AB=9;
由△HGA∽△GCA可知:AC=CG=9;
∴BG=HC;
∴CG=x=9;
即當(dāng)x=9時(shí);AG=AH.
故答案為:△HGA,△HAB.26、略
【分析】【分析】令x=0,得y=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024藝術(shù)品拍賣與宣傳推廣綜合服務(wù)合同3篇
- 2025年度環(huán)保設(shè)施PPP項(xiàng)目合作合同范本3篇
- 2025年度智能車庫(kù)產(chǎn)權(quán)交易合同范本4篇
- 2025年度文化產(chǎn)業(yè)園開發(fā)與租賃合同3篇
- 2025年企事業(yè)單位食堂承包與托管全面合作協(xié)議12篇
- 2025年度廠長(zhǎng)任期項(xiàng)目投資與風(fēng)險(xiǎn)管理合同3篇
- 2025年中投中財(cái)基金管理有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年中化集團(tuán)中化能源物流公司招聘筆試參考題庫(kù)含答案解析
- 二零二五版美容院專業(yè)護(hù)膚技術(shù)研發(fā)與轉(zhuǎn)讓合同4篇
- 二零二五版門窗安裝工程環(huán)保驗(yàn)收合同2篇
- MT/T 199-1996煤礦用液壓鉆車通用技術(shù)條件
- GB/T 6144-1985合成切削液
- GB/T 10357.1-2013家具力學(xué)性能試驗(yàn)第1部分:桌類強(qiáng)度和耐久性
- 第三方在線糾紛解決機(jī)制(ODR)述評(píng),國(guó)際商法論文
- 第5章-群體-團(tuán)隊(duì)溝通-管理溝通
- 腎臟病飲食依從行為量表(RABQ)附有答案
- 深基坑-安全教育課件
- 園林施工管理大型園林集團(tuán)南部區(qū)域養(yǎng)護(hù)標(biāo)準(zhǔn)圖例
- 排水許可申請(qǐng)表
- 低血糖的觀察和護(hù)理課件
- 計(jì)量檢定校準(zhǔn)技術(shù)服務(wù)合同協(xié)議書
評(píng)論
0/150
提交評(píng)論