版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年冀教版高一數(shù)學(xué)上冊階段測試試卷658考試試卷考試范圍:全部知識點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級:______考號:______總分欄題號一二三四五總分得分評卷人得分一、選擇題(共8題,共16分)1、如果角θ的終邊經(jīng)過點(diǎn)(-);則tanθ=()
A.
B.-
C.
D.
2、已知?jiǎng)t的值是。(A)1(B)(C)(D)03、【題文】設(shè)則對任意實(shí)數(shù)a,b,a+b0是的()A.充要條件B.充要不必要條件C.必要不充分條件D.既不充分也不必要條件4、【題文】已知直線與給出如下結(jié)論:
①不論為何值時(shí),與都互相垂直;
②當(dāng)變化時(shí),與分別經(jīng)過定點(diǎn)A(0,1)和B(-1,0);
③不論為何值時(shí),與都關(guān)于直線對稱;
④當(dāng)變化時(shí),與的交點(diǎn)軌跡是以AB為直徑的圓(除去原點(diǎn)).
其中正確的結(jié)論有().A.①③B.①②④C.①③④D.①②③④5、【題文】設(shè)全集集合則集合為()A.{1,2}B.{1}C.{2}D.{-1,1}6、【題文】集合則A∩B是()A.(1,-1)B.C.D.{1,-1}7、【題文】一個(gè)幾何體的三視圖如圖;該幾何體的表面積為。
A.280B.292C.360D.3728、程序框圖如圖所示,該程序運(yùn)行后輸出的S的值是()A.﹣3B.﹣C.D.2評卷人得分二、填空題(共5題,共10分)9、已知?jiǎng)tlog3645=____(用a,b表示).10、【題文】已知某幾何體的三視圖如圖所示,則該幾何體的體積為____。11、【題文】為R上的連續(xù)函數(shù),當(dāng)時(shí),定義則我們定義_____________。12、函數(shù)y=3sin(2x+)的最小正周期為____.13、已知函數(shù)f(x)=若f(a)+f(1)=0,則a的值為______.評卷人得分三、證明題(共8題,共16分)14、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點(diǎn),DF⊥BE,垂足為F,CF交AD于點(diǎn)G.
求證:(1)∠CFD=∠CAD;
(2)EG<EF.15、初中我們學(xué)過了正弦余弦的定義,例如sin30°=,同時(shí)也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設(shè)計(jì)一種方案,解決問題:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面積S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.16、求證:(1)周長為21的平行四邊形能夠被半徑為的圓面所覆蓋.
(2)桌面上放有一絲線做成的線圈,它的周長是2l,不管線圈形狀如何,都可以被個(gè)半徑為的圓紙片所覆蓋.17、AB是圓O的直徑,CD是圓O的一條弦,AB與CD相交于E,∠AEC=45°,圓O的半徑為1,求證:EC2+ED2=2.18、如圖,已知:D、E分別為△ABC的AB、AC邊上的點(diǎn),DE∥BC,BE與CD交于點(diǎn)O,直線AO與BC邊交于M,與DE交于N,求證:BM=MC.19、已知G是△ABC的重心,過A、G的圓與BG切于G,CG的延長線交圓于D,求證:AG2=GC?GD.20、求證:(1)周長為21的平行四邊形能夠被半徑為的圓面所覆蓋.
(2)桌面上放有一絲線做成的線圈,它的周長是2l,不管線圈形狀如何,都可以被個(gè)半徑為的圓紙片所覆蓋.21、已知D是銳角△ABC外接圓劣弧的中點(diǎn);弦AD與邊BC相交于點(diǎn)E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.評卷人得分四、解答題(共4題,共32分)22、已知等比數(shù)列{an}中,a1+a2+a3=7,a1a2a3=8,求an.
23、
空間四邊形ABCD中,AD=BC=2,E、F分別是AB、CD的中點(diǎn),若求異面直線AD;BC所成角的大?。?/p>
24、(滿分14分;共3小題,任選兩小題作答,每小題7分,若全做則按前兩小題計(jì)分)
(1)計(jì)算求值:
(2)函數(shù)y=ln(ax2+2x+1)的值域是一切實(shí)數(shù);求a的取值范圍;
(3)若<試確定實(shí)數(shù)a的取值范圍.
25、(12分)如圖,四棱錐P—ABCD的底面是正方形,PD⊥底面ABCD,點(diǎn)E在棱PB上。(1)求證:平面AEC⊥PDB;(2)當(dāng)PD=AB且E為PB的中點(diǎn)時(shí),求AE與平面PDB所成角的大小。評卷人得分五、綜合題(共4題,共20分)26、在直角坐標(biāo)系xoy中,一次函數(shù)的圖象與x軸、y軸分別交于點(diǎn)B和點(diǎn)A,點(diǎn)C的坐標(biāo)是(0,1),點(diǎn)D在y軸上且滿足∠BCD=∠ABD.求D點(diǎn)的坐標(biāo).27、已知拋物線y=ax2-2ax+c-1的頂點(diǎn)在直線y=-上,與x軸相交于B(α,0)、C(β,0)兩點(diǎn),其中α<β,且α2+β2=10.
(1)求這個(gè)拋物線的解析式;
(2)設(shè)這個(gè)拋物線與y軸的交點(diǎn)為P;H是線段BC上的一個(gè)動點(diǎn),過H作HK∥PB,交PC于K,連接PH,記線段BH的長為t,△PHK的面積為S,試將S表示成t的函數(shù);
(3)求S的最大值,以及S取最大值時(shí)過H、K兩點(diǎn)的直線的解析式.28、如圖,四邊形ABCD是菱形,點(diǎn)D的坐標(biāo)是(0,),以點(diǎn)C為頂點(diǎn)的拋物線y=ax2+bx+c恰好經(jīng)過x軸上A;B兩點(diǎn).
(1)求A;B,C三點(diǎn)的坐標(biāo);
(2)求經(jīng)過A,B,C三點(diǎn)的拋物線的解析式.29、已知拋物線y=x2+4ax+3a2(a>0)
(1)求證:拋物線的頂點(diǎn)必在x軸的下方;
(2)設(shè)拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右邊),過A、B兩點(diǎn)的圓M與y軸相切,且點(diǎn)M的縱坐標(biāo)為;求拋物線的解析式;
(3)在(2)的條件下,若拋物線的頂點(diǎn)為P,拋物線與y軸交于點(diǎn)C,求△CPA的面積.參考答案一、選擇題(共8題,共16分)1、D【分析】
∵角θ的終邊經(jīng)過點(diǎn)(-),且點(diǎn)(-)是角θ的終邊和單位圓的交點(diǎn);
∴x=-y=
∴tanθ==-
故選D.
【解析】【答案】由于角θ的終邊經(jīng)過點(diǎn)(-),可得x=-y=由此求得tanθ=的值.
2、B【分析】【解析】
因?yàn)閯t=-1,選B【解析】【答案】B3、A【分析】【解析】
試題分析:由是奇函數(shù).∴f(x)為增函數(shù).∵a+b≥0,?a≥-b,∴f(a)≥f(-b),∴f(a)≥-f(b);
∴f(a)+f(b)≥0,反之也成立,∴“a+b≥0”是“f(a)+f(b)≥0”的充要條件;選A.
考點(diǎn):1.利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;2.充要條件【解析】【答案】A4、B【分析】【解析】
試題分析:與互相垂直的條件是;a×1+1×(-a)=0,所以,①正確;
由直線系方程,知,②當(dāng)變化時(shí),與分別經(jīng)過定點(diǎn)A(0,1)和B(-1,0);正確;
當(dāng)時(shí),由兩方程消去a;
并整理得,即表示以AB為直徑的圓(除去原點(diǎn)),結(jié)合選項(xiàng)可知選B。
考點(diǎn):直線系方程;圓的方程。
點(diǎn)評:中檔題,本題綜合性較強(qiáng),較全面考查了兩直線的位置關(guān)系,直線系的概念以及圓的方程。【解析】【答案】B5、C【分析】【解析】【解析】【答案】C6、C【分析】【解析】略【解析】【答案】C7、C【分析】【解析】略【解析】【答案】C8、D【分析】【解答】解:程序在運(yùn)行過程中各變量的值如下表示:。是否繼續(xù)循環(huán)Si第一圈是﹣32第二圈是3第三圈是4第四圈是25第五圈是﹣36依此類推,S的值呈周期性變化:2,﹣3,﹣2,﹣3,,周期為4
由于2012=4×503。是否繼續(xù)循環(huán)Si第2012圈是22012第2013圈否故最終的輸出結(jié)果為:2;
故選D.
【分析】分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)計(jì)算并輸出S值.模擬程序的運(yùn)行過程,用表格對程序運(yùn)行過程中各變量的值進(jìn)行分析,不難得到最終的輸出結(jié)果.二、填空題(共5題,共10分)9、略
【分析】
∵log189=a,b=log185;
∴a+b=log189+log185=log18(9×5)=log1845,log1836=log18(2×18)=1+log182==2-log189=2-a;
∴l(xiāng)og3645==.
故答案為.
【解析】【答案】利用對數(shù)的換底公式即可求出.
10、略
【分析】【解析】
試題分析:由三視圖可知該幾何體是一個(gè)圓柱去掉了一部分,故所求幾何體的體積為
考點(diǎn):本題考查了三視圖的運(yùn)用。
點(diǎn)評:由三視圖聯(lián)想到原幾何體的圖形是解決此類問題的關(guān)鍵【解析】【答案】11、略
【分析】【解析】考察函數(shù)的連續(xù)性。【解析】【答案】12、π【分析】【解答】解:∵函數(shù)表達(dá)式為y=3sin(2x+),∴ω=2,可得最小正周期T=||=||=π
故答案為:π
【分析】將題中的函數(shù)表達(dá)式與函數(shù)y=Asin(ωx+φ)進(jìn)行對照,可得ω=2,由此結(jié)合三角函數(shù)的周期公式加以計(jì)算,即可得到函數(shù)的最小正周期.13、略
【分析】解:由分段函數(shù)的表達(dá)式可知f(1)=2;
若f(a)+f(1)=0;則f(a)=-f(1)=-2;
當(dāng)a>0時(shí),f(a)=2a=-2;此時(shí)方程無解;
當(dāng)a≤0時(shí);由f(a)=a+1=-2,解得a=-3;
故答案為:-3
根據(jù)分段函數(shù)的表達(dá)式進(jìn)行求解即可得到結(jié)論.
本題主要考查函數(shù)值的計(jì)算,根據(jù)分段函數(shù)的表達(dá)式是解決本題的關(guān)鍵.【解析】-3三、證明題(共8題,共16分)14、略
【分析】【分析】(1)連接AF,并延長交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點(diǎn)共圓即可;
(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點(diǎn)共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
則=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四點(diǎn)共圓;
∴∠CFD=∠CAD.
(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四點(diǎn)共圓;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.15、略
【分析】【分析】(1)過點(diǎn)C作CE⊥AB于點(diǎn)E;根據(jù)正弦的定義可以表示出CE的長度,然后利用三角形的面積公式列式即可得解;
(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過點(diǎn)C作CE⊥AB于點(diǎn)E;
則CE=AC?sin(α+β)=bsin(α+β);
∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB?ACsin(α+β)=BD?AD+CD?AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.16、略
【分析】【分析】(1)關(guān)鍵在于圓心位置;考慮到平行四邊形是中心對稱圖形,可讓覆蓋圓圓心與平行四邊形對角線交點(diǎn)疊合.
(2)“曲“化“直“.對比(1),應(yīng)取均分線圈的二點(diǎn)連線段中點(diǎn)作為覆蓋圓圓心.【解析】【解答】
證明:(1)如圖1;設(shè)ABCD的周長為2l,BD≤AC,AC;BD交于O,P為周界上任意一點(diǎn),不妨設(shè)在AB上;
則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周長為2l的平行四邊形ABCD可被以O(shè)為圓心;半徑為的圓所覆蓋;命題得證.
(2)如圖2,在線圈上分別取點(diǎn)R,Q,使R、Q將線圈分成等長兩段,每段各長l.又設(shè)RQ中點(diǎn)為G,M為線圈上任意一點(diǎn),連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G為圓心,長為半徑的圓紙片可以覆蓋住整個(gè)線圈.17、略
【分析】【分析】首先作CD關(guān)于AB的對稱直線FG,由∠AEC=45°,即可證得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易證得O,C,G,E四點(diǎn)共圓,則可求得CG2=OC2+OG2=2.繼而證得EC2+ED2=2.【解析】【解答】證明:作CD關(guān)于AB的對稱直線FG;
∵∠AEC=45°;
∴∠AEF=45°;
∴CD⊥FG;
∴CG2=CE2+EG2;
即CG2=CE2+ED2;
∵△OCD≌△OGF(SSS);
∴∠OCD=∠OGF.
∴O;C,G,E四點(diǎn)共圓.
∴∠COG=∠CEG=90°.
∴CG2=OC2+OG2=2.
∴EC2+ED2=2.18、略
【分析】【分析】延長AM,過點(diǎn)B作CD的平行線與AM的延長線交于點(diǎn)F,再連接CF.根據(jù)平行線分線段成比例的性質(zhì)和逆定理可得CF∥BE,根據(jù)平行四邊形的判定和性質(zhì)即可得證.【解析】【解答】證明:延長AM;過點(diǎn)B作CD的平行線與AM的延長線交于點(diǎn)F,再連接CF.
又∵DE∥BC;
∴;
∴CF∥BE;
從而四邊形OBFC為平行四邊形;
所以BM=MC.19、略
【分析】【分析】構(gòu)造以重心G為頂點(diǎn)的平行四邊形GBFC,并巧用A、D、F、C四點(diǎn)共圓巧證乘積.延長GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點(diǎn)共圓,從而GA、GF=GC?GD.于是GA2=GC?GD.【解析】【解答】證明:延長GP至F;使PF=PG,連接AD,BF,CF;
∵G是△ABC的重心;
∴AG=2GP;BP=PC;
∵PF=PG;
∴四邊形GBFC是平行四邊形;
∴GF=2GP;
∴AG=GF;
∵BG∥CF;
∴∠1=∠2
∵過A;G的圓與BG切于G;
∴∠3=∠D;
又∠2=∠3;
∴∠1=∠2=∠3=∠D;
∴A;D、F、C四點(diǎn)共圓;
∴GA;GF=GC?GD;
即GA2=GC?GD.20、略
【分析】【分析】(1)關(guān)鍵在于圓心位置;考慮到平行四邊形是中心對稱圖形,可讓覆蓋圓圓心與平行四邊形對角線交點(diǎn)疊合.
(2)“曲“化“直“.對比(1),應(yīng)取均分線圈的二點(diǎn)連線段中點(diǎn)作為覆蓋圓圓心.【解析】【解答】
證明:(1)如圖1;設(shè)ABCD的周長為2l,BD≤AC,AC;BD交于O,P為周界上任意一點(diǎn),不妨設(shè)在AB上;
則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周長為2l的平行四邊形ABCD可被以O(shè)為圓心;半徑為的圓所覆蓋;命題得證.
(2)如圖2,在線圈上分別取點(diǎn)R,Q,使R、Q將線圈分成等長兩段,每段各長l.又設(shè)RQ中點(diǎn)為G,M為線圈上任意一點(diǎn),連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G為圓心,長為半徑的圓紙片可以覆蓋住整個(gè)線圈.21、略
【分析】【分析】(1)求出∠BAD=∠CAD,根據(jù)角平分線性質(zhì)推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根據(jù)等腰三角形性質(zhì)求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;
(3)BF過圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F為AC中點(diǎn);
∴cosC==.
答:cosC的值是.
(3)BF過圓心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.四、解答題(共4題,共32分)22、略
【分析】
設(shè){an}的公比為q,由題意知
解得或
∴an=2n-1或an=23-n.
【解析】【答案】利用等比數(shù)列的基本量a1,q,根據(jù)條件求出a1和q.最后根據(jù)等比數(shù)列的通項(xiàng)公式求得an.
23、略
【分析】
設(shè)G為AC的中點(diǎn);∵E;F分別是AB、CD中點(diǎn)。
∴EG∥BC且
FG∥AD且
∴∠EGF為異面直線AD;BC所成的角(或其補(bǔ)角)
∵
∴△EGF中,
∴∠EGF=120°;
即異面直線AD;BC所成的角為60°
【解析】【答案】設(shè)G為AC的中點(diǎn),由已知中AD=BC=2,E、F分別是AB、CD的中點(diǎn),若根據(jù)三角形中位線定理,我們易求出∠EGF為異面直線AD;BC所成的角(或其補(bǔ)角),解三角形EGF即可得到答案.
24、略
【分析】
(1)
=5×(5×2)lg2=5×10lg2=5×2=10
(2)當(dāng)a=0時(shí);y=ln(2x+1),滿足題意。
當(dāng)a≠0時(shí),要使函數(shù)y=ln(ax2+2x+1)的值域是一切實(shí)數(shù);需滿足。
解得0<a≤1
∴a的取值范圍[0;1]
(3)設(shè)函數(shù)則f(x)是奇函數(shù),由冪函數(shù)的性質(zhì)作出函數(shù)圖象如圖:
∵
∴或或
解得
【解析】【答案】(1)根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的運(yùn)算法則化簡即可。
(2)分類討論真數(shù)的二次項(xiàng)系數(shù)是否為零;使得真數(shù)能取到所有的正數(shù)。
(3)根據(jù)冪函數(shù)的圖象與性質(zhì);列出兩個(gè)底數(shù)的大小關(guān)系,解不等式組即可。
25、略
【分析】本題主要考查了直線與平面垂直的判定,以及直線與平面所成的角,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題.(Ⅰ)欲證平面AEC⊥平面PDB,根據(jù)面面垂直的判定定理可知在平面AEC內(nèi)一直線與平面PDB垂直,而根據(jù)題意可得AC⊥平面PDB;(Ⅱ)設(shè)AC∩BD=O,連接OE,根據(jù)線面所成角的定義可知∠AEO為AE與平面PDB所的角,在Rt△AOE中求出此角即可.(1)證明:∵底面ABCD是正方形∴AC⊥BD又PD⊥底面ABCDPD⊥AC(2)【解析】
設(shè)AC與BD交于O點(diǎn),連接EO則易得∠AEO為AE與面PDB所成的角∵E、O為中點(diǎn)∴EO=PD∴EO⊥AO∴在Rt△AEO中OE=PD=AB=AO∴∠AEO=45°即AE與面PDB所成角的大小為45°【解析】【答案】(1)證明:見解析;(2)AE與面PDB所成角的大小為45°。五、綜合題(共4題,共20分)26、略
【分析】【分析】先根據(jù)一次函數(shù)的解析式求出點(diǎn)A及點(diǎn)B的坐標(biāo),利用勾股定理解出線段BC、AB的坐標(biāo),分一下三種情況進(jìn)行討論,(1)若D點(diǎn)在C點(diǎn)上方時(shí),(2)若D點(diǎn)在AC之間時(shí),(3)若D點(diǎn)在A點(diǎn)下方時(shí),每一種情況下求出點(diǎn)D的坐標(biāo)即可.【解析】【解答】解:∵A;B是直線與y軸、x軸的交點(diǎn);
令y=0,解得;
∴;
令x=0;解得y=-3;
∴A(0;-3);
由勾股定理得,;
(1)若D點(diǎn)在C點(diǎn)上方時(shí);則∠BCD為鈍角;
∵∠BCD=∠ABD;又∠CDB=∠ADB;
∴△BCD∽△ABD;
∴;
設(shè)D(0;y),則y>1;
∵;
∴;
∴8y2-22y+5=0;
解得或(舍去);
∴點(diǎn)D的坐標(biāo)為(0,);
(2)若D點(diǎn)在AC之間時(shí);則∠BCD為銳角;
∵∠ABD=∠BCD;又∠BAD=∠CAB;
∴△ABD∽△ACB,∴;
設(shè)D(0,y),則-3<y<1,又;
∴;
整理得8y2-18y-5=0;
解得或(舍去);
∴D點(diǎn)坐標(biāo)為(0,-);
(3)若D點(diǎn)在A點(diǎn)下方時(shí);有∠BAC=∠ABD+∠ADB>∠ABD;
又顯然∠BAC<∠BCD;
∴D點(diǎn)在A點(diǎn)下方是不可能的.
綜上所述,D點(diǎn)的坐標(biāo)為(0,)或(0,-).27、略
【分析】【分析】(1)把頂點(diǎn)A的坐標(biāo)代入直線的解析式得出c=a+;根據(jù)根與系數(shù)的關(guān)系求出c=1-3a,得出方程組,求出方程組的解即可;
(2)求出P、B、C的坐標(biāo),BC=4,根據(jù)sin∠BCP==,和HK∥BP,得出=,求出PK=t;過H作HG⊥PC于G,根據(jù)三角形的面積公式即可求出答案;
(3)根據(jù)S=-(t-2)2+2求出S取最大值,作KK′⊥HC于K′,求出KK′和OK′,得到點(diǎn)K的坐標(biāo),設(shè)所求直線的解析式為y=kx+b,代入得到方程組求出即可.【解析】【解答】解:(1)由y=ax2-2ax+c-1=a(x-1)2+c-1-a得拋物線的頂點(diǎn)為
A(1;c-1-a).
∵點(diǎn)A在直線y=-x+8上;
∴c-1-a=-×1+8;
即c=a+;①
又拋物線與x軸相交于B(α;0);C(β,0)兩點(diǎn);
∴α、β是方程ax2-2ax+c-1=0的兩個(gè)根.
∴α+β=2,αβ=;
又α2+β2=10,即(α+β)2-2αβ=10;
∴4-2×=10;
即c=1-3a②;
由①②解得:a=-;c=5;
∴y=-x2+x+4;
此時(shí);拋物線與x軸確有兩個(gè)交點(diǎn);
答:這個(gè)拋物線解析式為:y=-x2+x+4.
(2)由拋物線y=-x2+x+4;
令x=0;得y=4,故P點(diǎn)坐標(biāo)為(0,4);
令y=0,解得x1=-1,x2=3;
∵α<β;∴B(-1,0),C(3,0);
∴BC=4,又由OC=3,OP=4,得PC=5,sin∠BCP==;
∵BH=t;∴HC=4-t.
∵HK∥BP,=,=;
∴PK=t
如圖,過H作HG⊥PC于G,則HG=HC,
sin∠BCP=(4-t)?=(4-t);
∴S=×t×(4-t)=t2+2t;
∵點(diǎn)H在線段BC上且HK∥BP;∴0<t<4.
∴所求的函數(shù)式為:S=-t2+2t(0<t<4);
答:將S表示成t的函數(shù)為S=-t2+2t(0<t<4).
(3)由S=-t2+2t=-(t-2)2+2(0<t<4);知:
當(dāng)t=2(滿足0<t<4)時(shí);S取最大值,其值為2;
此時(shí);點(diǎn)H的坐標(biāo)為(1,0);
∵HK∥PB;且H為BC的中點(diǎn);
∴K為PC的中點(diǎn);
作KK′⊥HC于K′;
則KK′=PO=2,OK′=CO=;
∴點(diǎn)K的坐標(biāo)為(;2);
設(shè)所求直線的解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年重型機(jī)械焊接安裝服務(wù)協(xié)議3篇
- 2025年度二手房交易首付分期及風(fēng)險(xiǎn)控制協(xié)議4篇
- 2025年度防火門檢測維修服務(wù)合同4篇
- 2025版協(xié)議離婚實(shí)操教程與全程輔導(dǎo)合同3篇
- 2025年個(gè)人房產(chǎn)測繪與房地產(chǎn)市場調(diào)研合同4篇
- 2025版臨時(shí)演出場地租賃協(xié)議書3篇
- 2025年度綠色環(huán)保項(xiàng)目臨時(shí)工勞動合同范本8篇
- 個(gè)人家政服務(wù)合同2024年度專用3篇
- 2025年度智慧城市基礎(chǔ)設(shè)施場外工程承包合同4篇
- 2025年度物業(yè)設(shè)施設(shè)備智能化升級合同3篇
- 2024-2025學(xué)年山東省聊城市高一上學(xué)期期末數(shù)學(xué)教學(xué)質(zhì)量檢測試題(附解析)
- 西方史學(xué)史課件3教學(xué)
- 2024年中國醫(yī)藥研發(fā)藍(lán)皮書
- 廣東省佛山市 2023-2024學(xué)年五年級(上)期末數(shù)學(xué)試卷
- 臺兒莊介紹課件
- 疥瘡病人的護(hù)理
- 人工智能算法與實(shí)踐-第16章 LSTM神經(jīng)網(wǎng)絡(luò)
- 17個(gè)崗位安全操作規(guī)程手冊
- 2025年山東省濟(jì)南市第一中學(xué)高三下學(xué)期期末統(tǒng)一考試物理試題含解析
- 中學(xué)安全辦2024-2025學(xué)年工作計(jì)劃
- 網(wǎng)絡(luò)安全保障服務(wù)方案(網(wǎng)絡(luò)安全運(yùn)維、重保服務(wù))
評論
0/150
提交評論