




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)湖南涉外經(jīng)濟(jì)學(xué)院
《時(shí)空數(shù)據(jù)挖掘基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,描述性統(tǒng)計(jì)是常用的方法之一。以下關(guān)于描述性統(tǒng)計(jì)指標(biāo)的說(shuō)法中,錯(cuò)誤的是?()A.均值是一組數(shù)據(jù)的平均值,能反映數(shù)據(jù)的集中趨勢(shì)B.中位數(shù)是將數(shù)據(jù)從小到大排序后位于中間位置的數(shù)值,不受極端值影響C.標(biāo)準(zhǔn)差反映了數(shù)據(jù)的離散程度,標(biāo)準(zhǔn)差越大,數(shù)據(jù)的波動(dòng)越小D.描述性統(tǒng)計(jì)指標(biāo)可以幫助我們快速了解數(shù)據(jù)的基本特征和分布情況2、在進(jìn)行數(shù)據(jù)分析時(shí),數(shù)據(jù)的標(biāo)準(zhǔn)化或歸一化處理常常是必要的。假設(shè)我們有一組特征數(shù)據(jù),取值范圍差異較大,以下哪種標(biāo)準(zhǔn)化方法可以將數(shù)據(jù)映射到特定的區(qū)間,例如[0,1]?()A.最小-最大標(biāo)準(zhǔn)化B.Z-score標(biāo)準(zhǔn)化C.小數(shù)定標(biāo)標(biāo)準(zhǔn)化D.以上都是3、數(shù)據(jù)分析中的數(shù)據(jù)融合是將多個(gè)數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)要整合來(lái)自不同部門的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)融合方法的描述,正確的是:()A.簡(jiǎn)單地將數(shù)據(jù)拼接在一起,不處理數(shù)據(jù)格式和語(yǔ)義的差異B.不進(jìn)行數(shù)據(jù)的清洗和轉(zhuǎn)換,直接使用原始數(shù)據(jù)進(jìn)行融合C.運(yùn)用數(shù)據(jù)清洗、轉(zhuǎn)換和匹配技術(shù),解決數(shù)據(jù)格式、單位和語(yǔ)義的不一致,確保融合后數(shù)據(jù)的準(zhǔn)確性和可用性D.認(rèn)為數(shù)據(jù)融合不會(huì)引入誤差和沖突,不進(jìn)行質(zhì)量檢查4、在處理大數(shù)據(jù)時(shí),分布式計(jì)算框架發(fā)揮了重要作用。以下關(guān)于分布式計(jì)算框架的描述,正確的是:()A.Hadoop僅適用于數(shù)據(jù)存儲(chǔ),不支持?jǐn)?shù)據(jù)處理B.Spark相比Hadoop,在迭代計(jì)算方面性能更優(yōu)C.分布式計(jì)算框架可以解決數(shù)據(jù)的一致性問(wèn)題,但無(wú)法提高計(jì)算效率D.分布式計(jì)算框架中的節(jié)點(diǎn)之間不需要進(jìn)行通信和協(xié)調(diào)5、在數(shù)據(jù)庫(kù)中,若要執(zhí)行事務(wù)處理以確保數(shù)據(jù)的一致性,以下哪個(gè)特性是關(guān)鍵的?()A.原子性B.一致性C.隔離性D.持久性6、數(shù)據(jù)分析中的數(shù)據(jù)可視化能夠幫助我們更直觀地理解數(shù)據(jù)。假設(shè)要展示不同地區(qū)在過(guò)去十年間的經(jīng)濟(jì)增長(zhǎng)趨勢(shì),以下關(guān)于數(shù)據(jù)可視化的描述,哪一項(xiàng)是不正確的?()A.可以使用折線圖清晰地呈現(xiàn)經(jīng)濟(jì)指標(biāo)隨時(shí)間的變化B.柱狀圖能夠有效地對(duì)比不同地區(qū)在特定時(shí)間點(diǎn)的經(jīng)濟(jì)數(shù)值C.為了使圖表更美觀,可以添加過(guò)多的裝飾元素,即使這可能會(huì)干擾數(shù)據(jù)的解讀D.選擇合適的顏色和標(biāo)記,能夠增強(qiáng)圖表的可讀性和吸引力7、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣是一種常用的方法。以下關(guān)于數(shù)據(jù)抽樣的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)抽樣可以減少數(shù)據(jù)分析的時(shí)間和成本,同時(shí)保證樣本具有代表性B.隨機(jī)抽樣是一種常用的數(shù)據(jù)抽樣方法,能夠確保每個(gè)數(shù)據(jù)點(diǎn)被選中的概率相等C.分層抽樣可以根據(jù)某些特征將數(shù)據(jù)分為不同層次,然后從各層次中進(jìn)行抽樣D.數(shù)據(jù)抽樣的樣本大小越大,分析結(jié)果就越準(zhǔn)確,因此應(yīng)盡量選擇大樣本8、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示多個(gè)變量之間的相關(guān)性,以下哪種圖表較為合適?()A.熱力圖B.平行坐標(biāo)圖C.?;鶊DD.以上都是9、關(guān)于數(shù)據(jù)分析中的多變量分析,假設(shè)要同時(shí)研究多個(gè)自變量對(duì)因變量的影響。以下哪種方法可以幫助我們理解變量之間的復(fù)雜關(guān)系和交互作用?()A.多元線性回歸B.因子分析,提取公共因子C.偏最小二乘回歸D.只研究單個(gè)變量與因變量的關(guān)系10、在數(shù)據(jù)分析中,若要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理,以下哪種方法較為常見(jiàn)?()A.Z-score標(biāo)準(zhǔn)化B.Min-Max標(biāo)準(zhǔn)化C.小數(shù)定標(biāo)標(biāo)準(zhǔn)化D.以上都是11、在進(jìn)行關(guān)聯(lián)分析時(shí),如果兩個(gè)商品的支持度很高,但置信度很低,說(shuō)明:()A.這兩個(gè)商品經(jīng)常被同時(shí)購(gòu)買,但這種關(guān)聯(lián)不是很可靠B.這兩個(gè)商品很少被同時(shí)購(gòu)買,但一旦同時(shí)購(gòu)買,關(guān)聯(lián)很強(qiáng)C.這種關(guān)聯(lián)是虛假的,沒(méi)有實(shí)際意義D.無(wú)法得出明確的結(jié)論12、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持某個(gè)假設(shè)。假設(shè)要檢驗(yàn)一種新的教學(xué)方法是否能顯著提高學(xué)生的考試成績(jī),需要進(jìn)行嚴(yán)格的假設(shè)檢驗(yàn)。以下哪種假設(shè)檢驗(yàn)方法在這種教育評(píng)估場(chǎng)景中最為適用?()A.t檢驗(yàn)B.z檢驗(yàn)C.F檢驗(yàn)D.卡方檢驗(yàn)13、在多變量數(shù)據(jù)分析中,主成分分析(PCA)是一種常用的方法。假設(shè)你有一組包含多個(gè)相關(guān)變量的數(shù)據(jù),以下關(guān)于PCA應(yīng)用的目的,哪一項(xiàng)是最準(zhǔn)確的?()A.減少變量數(shù)量,同時(shí)保留大部分?jǐn)?shù)據(jù)的方差B.找到變量之間的線性關(guān)系C.對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理D.直接用于預(yù)測(cè)未知數(shù)據(jù)14、數(shù)據(jù)分析中的數(shù)據(jù)可視化不僅要美觀,還要具有交互性。假設(shè)要構(gòu)建一個(gè)交互式的數(shù)據(jù)可視化報(bào)表,允許用戶根據(jù)自己的需求篩選和查看數(shù)據(jù),以下哪種工具可能是最合適的?()A.ExcelB.TableauC.PowerBID.matplotlib15、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)有很多種,其中星型架構(gòu)是一種常用的架構(gòu)。以下關(guān)于星型架構(gòu)的描述中,錯(cuò)誤的是?()A.星型架構(gòu)由事實(shí)表和維度表組成B.事實(shí)表中包含了大量的詳細(xì)數(shù)據(jù),維度表中包含了對(duì)事實(shí)表的描述信息C.星型架構(gòu)的數(shù)據(jù)查詢效率較高,適用于大規(guī)模數(shù)據(jù)集D.星型架構(gòu)的設(shè)計(jì)和維護(hù)比較復(fù)雜,需要專業(yè)的技術(shù)和知識(shí)16、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣是一種常用的方法。以下關(guān)于數(shù)據(jù)抽樣的目的,錯(cuò)誤的是?()A.減少數(shù)據(jù)的數(shù)量,降低數(shù)據(jù)分析的成本和時(shí)間B.保證樣本具有代表性,能夠反映總體的特征和趨勢(shì)C.避免數(shù)據(jù)的過(guò)擬合,提高數(shù)據(jù)分析的結(jié)果的準(zhǔn)確性和可靠性D.增加數(shù)據(jù)的多樣性,提高數(shù)據(jù)分析的結(jié)果的創(chuàng)新性和實(shí)用性17、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問(wèn)題。為了得到高質(zhì)量、準(zhǔn)確且可用的數(shù)據(jù),以下哪種數(shù)據(jù)清洗方法通常是首先考慮的?()A.直接刪除包含缺失值或錯(cuò)誤數(shù)據(jù)的記錄B.采用合適的方法填充缺失值,例如使用均值、中位數(shù)或其他統(tǒng)計(jì)值C.對(duì)重復(fù)記錄進(jìn)行隨機(jī)選擇保留D.忽略數(shù)據(jù)中的問(wèn)題,直接進(jìn)行分析18、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的工具有很多,其中Tableau是一種常用的工具。以下關(guān)于Tableau的描述中,錯(cuò)誤的是?()A.Tableau可以連接多種數(shù)據(jù)源,進(jìn)行數(shù)據(jù)的導(dǎo)入和整合B.Tableau可以制作各種類型的圖表,進(jìn)行數(shù)據(jù)可視化C.Tableau的操作簡(jiǎn)單易學(xué),適用于非專業(yè)用戶D.Tableau只能處理小規(guī)模數(shù)據(jù)集,對(duì)于大規(guī)模數(shù)據(jù)集無(wú)法處理19、在數(shù)據(jù)分析的方差分析(ANOVA)中,以下關(guān)于組間方差和組內(nèi)方差的描述,錯(cuò)誤的是()A.組間方差反映了不同組之間的差異B.組內(nèi)方差反映了組內(nèi)個(gè)體之間的差異C.如果組間方差顯著大于組內(nèi)方差,說(shuō)明不同組之間存在顯著差異D.組間方差和組內(nèi)方差的比值越大,越說(shuō)明組間差異不顯著20、在時(shí)間序列數(shù)據(jù)分析中,預(yù)測(cè)未來(lái)值是一個(gè)重要的應(yīng)用。假設(shè)我們有一個(gè)股票價(jià)格的時(shí)間序列數(shù)據(jù),想要預(yù)測(cè)未來(lái)一段時(shí)間的價(jià)格走勢(shì),以下哪種方法可能較為有效?()A.移動(dòng)平均法B.指數(shù)平滑法C.ARIMA模型D.以上都有可能,取決于數(shù)據(jù)特點(diǎn)21、在數(shù)據(jù)分析中,數(shù)據(jù)集成用于將多個(gè)數(shù)據(jù)源的數(shù)據(jù)合并在一起。假設(shè)要集成來(lái)自不同數(shù)據(jù)庫(kù)的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)集成的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.需要解決數(shù)據(jù)格式不一致、字段命名差異等問(wèn)題B.可以使用ETL(Extract,Transform,Load)工具來(lái)實(shí)現(xiàn)數(shù)據(jù)的抽取、轉(zhuǎn)換和加載C.數(shù)據(jù)集成過(guò)程中可能會(huì)引入重復(fù)數(shù)據(jù)和數(shù)據(jù)沖突,需要進(jìn)行處理D.數(shù)據(jù)集成可以隨意進(jìn)行,不需要考慮數(shù)據(jù)的質(zhì)量和一致性22、假設(shè)我們有一組銷售數(shù)據(jù),要分析不同產(chǎn)品類別的銷售額在總銷售額中的占比情況,以下哪種圖表最能直觀地展示結(jié)果?()A.折線圖B.柱狀圖C.餅圖D.箱線圖23、在數(shù)據(jù)分析中的關(guān)聯(lián)規(guī)則挖掘中,以下關(guān)于支持度和置信度的說(shuō)法,錯(cuò)誤的是()A.支持度表示項(xiàng)集在數(shù)據(jù)集中出現(xiàn)的頻率,用于衡量規(guī)則的普遍性B.置信度表示在包含前提條件的事務(wù)中同時(shí)包含結(jié)論的概率,用于衡量規(guī)則的可靠性C.通常情況下,支持度和置信度越高,關(guān)聯(lián)規(guī)則越有價(jià)值D.只關(guān)注支持度或置信度其中一個(gè)指標(biāo)就可以確定有效的關(guān)聯(lián)規(guī)則,另一個(gè)指標(biāo)可以忽略24、數(shù)據(jù)分析中的數(shù)據(jù)降維技術(shù)常用于減少數(shù)據(jù)的維度,同時(shí)保留重要信息。假設(shè)你有一個(gè)高維的數(shù)據(jù)集,包含眾多特征。以下關(guān)于數(shù)據(jù)降維方法的選擇,哪一項(xiàng)是最需要考慮的因素?()A.降維后的結(jié)果是否易于解釋和可視化B.降維方法的計(jì)算復(fù)雜度和效率C.降維過(guò)程中是否會(huì)丟失關(guān)鍵的信息D.降維方法是否新穎和熱門25、假設(shè)要評(píng)估一個(gè)數(shù)據(jù)分析模型的性能,以下關(guān)于評(píng)估指標(biāo)和方法的描述,正確的是:()A.準(zhǔn)確率是唯一可靠的評(píng)估指標(biāo),能全面反映模型的好壞B.召回率在所有情況下都比精確率更重要C.交叉驗(yàn)證可以有效地避免模型過(guò)擬合,并且能更準(zhǔn)確地評(píng)估模型在不同數(shù)據(jù)子集上的性能D.對(duì)于不平衡數(shù)據(jù)集,使用平衡準(zhǔn)確率來(lái)評(píng)估模型是不合適的26、數(shù)據(jù)分析中,回歸分析用于建立變量之間的關(guān)系模型。以下關(guān)于回歸分析的說(shuō)法中,錯(cuò)誤的是?()A.線性回歸是回歸分析中最常見(jiàn)的類型,用于建立因變量與一個(gè)或多個(gè)自變量之間的線性關(guān)系B.回歸分析可以用來(lái)預(yù)測(cè)因變量的值,根據(jù)自變量的變化情況進(jìn)行推斷C.回歸分析的結(jié)果只適用于特定的數(shù)據(jù)集,不能推廣到其他情況D.在進(jìn)行回歸分析時(shí),需要對(duì)模型進(jìn)行評(píng)估和驗(yàn)證,確保其準(zhǔn)確性和可靠性27、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是非常重要的一步。以下關(guān)于數(shù)據(jù)清洗的描述,錯(cuò)誤的是:()A.數(shù)據(jù)清洗旨在處理缺失值、異常值和重復(fù)值等問(wèn)題B.可以通過(guò)刪除包含缺失值的整行數(shù)據(jù)來(lái)進(jìn)行處理C.對(duì)于異常值,應(yīng)一律刪除以保證數(shù)據(jù)的準(zhǔn)確性D.重復(fù)值的處理需要根據(jù)具體情況決定保留或刪除28、數(shù)據(jù)分析中的數(shù)據(jù)質(zhì)量評(píng)估是確保數(shù)據(jù)可靠性的關(guān)鍵步驟。假設(shè)要評(píng)估一個(gè)新收集的數(shù)據(jù)集的質(zhì)量,以下關(guān)于數(shù)據(jù)質(zhì)量評(píng)估指標(biāo)的描述,正確的是:()A.只關(guān)注數(shù)據(jù)的準(zhǔn)確性,忽略完整性和一致性B.不制定明確的評(píng)估指標(biāo)和標(biāo)準(zhǔn),主觀判斷數(shù)據(jù)質(zhì)量C.綜合考慮準(zhǔn)確性、完整性、一致性、時(shí)效性、可用性等指標(biāo),制定量化的評(píng)估標(biāo)準(zhǔn)和方法,對(duì)數(shù)據(jù)質(zhì)量進(jìn)行全面評(píng)估,并提出改進(jìn)措施D.認(rèn)為數(shù)據(jù)質(zhì)量評(píng)估是一次性的工作,不需要持續(xù)監(jiān)測(cè)和改進(jìn)29、在處理缺失值時(shí),如果缺失值的比例較高且數(shù)據(jù)呈現(xiàn)一定的規(guī)律性,以下哪種方法可能較為有效?()A.基于模型的插補(bǔ)B.多重插補(bǔ)C.隨機(jī)插補(bǔ)D.以上都不是30、對(duì)于一個(gè)不平衡的數(shù)據(jù)集,若要通過(guò)采樣方法來(lái)平衡數(shù)據(jù),以下哪種采樣策略可能會(huì)導(dǎo)致過(guò)擬合?()A.隨機(jī)過(guò)采樣B.隨機(jī)欠采樣C.SMOTE采樣D.以上都有可能二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在能源交易市場(chǎng)中,如何利用數(shù)據(jù)分析來(lái)預(yù)測(cè)價(jià)格走勢(shì)、評(píng)估市場(chǎng)風(fēng)險(xiǎn)和優(yōu)化交易策略?請(qǐng)深入探討數(shù)據(jù)的來(lái)源和處理方法,以及市場(chǎng)不確定性對(duì)分析結(jié)果的影響。2、(本題5分)教育領(lǐng)域逐漸重視數(shù)據(jù)分析在教學(xué)改進(jìn)和學(xué)生評(píng)估中的應(yīng)用。論述如何通過(guò)對(duì)學(xué)生學(xué)習(xí)數(shù)據(jù)的分析來(lái)制定個(gè)性化的學(xué)習(xí)計(jì)劃、評(píng)估教學(xué)效果,以及如何利用數(shù)據(jù)分析預(yù)測(cè)學(xué)生的學(xué)業(yè)表現(xiàn)和發(fā)現(xiàn)潛在的學(xué)習(xí)問(wèn)題。3、(本題5分)在電信增值服務(wù)領(lǐng)域,用戶的增值服務(wù)使用數(shù)據(jù)、消費(fèi)行為數(shù)據(jù)等不斷積累。論述如何通過(guò)數(shù)據(jù)分析技術(shù),像增值服務(wù)個(gè)性化推薦、用戶消費(fèi)行為分析等,提升電信增值服務(wù)的用戶滿意度和業(yè)務(wù)收入,同時(shí)思考在數(shù)據(jù)隱私保護(hù)法規(guī)嚴(yán)格、用戶需求變化快和市場(chǎng)競(jìng)爭(zhēng)激烈方面的挑戰(zhàn)及應(yīng)對(duì)措施。4、(本題5分)能源行業(yè)在能源生產(chǎn)、傳輸和分配過(guò)程中產(chǎn)生了大量的數(shù)據(jù)。探討如何借助數(shù)據(jù)分析方法,比如能源需求預(yù)測(cè)、電網(wǎng)故障診斷等,實(shí)現(xiàn)能源的合理調(diào)配、保障能源供應(yīng)的穩(wěn)定性和可靠性,同時(shí)研究在數(shù)據(jù)采集精度、數(shù)據(jù)更新頻率和跨部門數(shù)據(jù)整合方面所面臨的困難及解決途徑。5、(本題5分)在電商直播領(lǐng)域,如何通過(guò)對(duì)觀眾行為和銷售數(shù)據(jù)的分析,優(yōu)化直播內(nèi)容和營(yíng)銷策略,提高直播帶貨的效果和轉(zhuǎn)化率。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)闡述數(shù)據(jù)挖掘中的異常檢測(cè)在網(wǎng)絡(luò)安全中的應(yīng)用,說(shuō)明如何通過(guò)異常檢測(cè)發(fā)現(xiàn)網(wǎng)絡(luò)攻擊和異常行為。2、(本題5分)闡述數(shù)據(jù)分析中的生存分析的概念和應(yīng)用場(chǎng)景,如在醫(yī)學(xué)研究、客戶流失預(yù)測(cè)中的應(yīng)用,并解釋常用的生存分析方法。3、(本題5分)簡(jiǎn)述數(shù)據(jù)挖掘中的文本分類技術(shù),如樸素貝葉斯、支持向量機(jī)等在文本分類中的應(yīng)用,并比較它
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高三班會(huì)演講稿
- 4 公民的基本權(quán)利和義務(wù)(教學(xué)設(shè)計(jì))2023-2024學(xué)年統(tǒng)編版道德與法治六年級(jí)上冊(cè)
- logo購(gòu)買合同范本
- 100以內(nèi)的加法和減法(二)-不退位減(教學(xué)設(shè)計(jì))-2024-2025學(xué)年二年級(jí)上冊(cè)數(shù)學(xué)人教版
- 食品運(yùn)送合同范本
- 12急行跳遠(yuǎn)教學(xué)設(shè)計(jì)8-八年級(jí)體育與健康
- Module 3 Unit1 Point to the door(教學(xué)設(shè)計(jì))2024-2025學(xué)年外研版(三起)英語(yǔ)三年級(jí)上冊(cè)
- 研學(xué)活動(dòng)合同范本
- 2024-2025學(xué)年九年級(jí)上學(xué)期牛津譯林版英語(yǔ)Unit 5 Reading 教學(xué)設(shè)計(jì)
- 2023初一暑假前教育家長(zhǎng)會(huì)演講稿
- 新版人教版七年級(jí)下冊(cè)數(shù)學(xué)全冊(cè)教案教學(xué)設(shè)計(jì)含教學(xué)反思
- 《網(wǎng)絡(luò)攻擊與防御》課件第四章 基于系統(tǒng)的攻擊與防御
- 供電一把手講安全課
- 工程施工派工單
- 編紙條 市賽獲獎(jiǎng) 完整版課件
- 玩具公司職位說(shuō)明書(shū)匯編
- 平面設(shè)計(jì)創(chuàng)意與制作課件
- 化學(xué)專業(yè)英語(yǔ)元素周期表
- 新湘版小學(xué)科學(xué)四年級(jí)下冊(cè)教案(全冊(cè))
- Q∕SY 06349-2019 油氣輸送管道線路工程施工技術(shù)規(guī)范
- 實(shí)驗(yàn)心理學(xué)課件(周愛(ài)保博士版)
評(píng)論
0/150
提交評(píng)論