河北經(jīng)貿大學《ip設計》2023-2024學年第二學期期末試卷_第1頁
河北經(jīng)貿大學《ip設計》2023-2024學年第二學期期末試卷_第2頁
河北經(jīng)貿大學《ip設計》2023-2024學年第二學期期末試卷_第3頁
河北經(jīng)貿大學《ip設計》2023-2024學年第二學期期末試卷_第4頁
河北經(jīng)貿大學《ip設計》2023-2024學年第二學期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁河北經(jīng)貿大學

《ip設計》2023-2024學年第二學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的姿態(tài)估計任務中,需要確定物體在三維空間中的方向和位置。假設要估計一個機器人手臂的姿態(tài),以實現(xiàn)精確的控制和操作。以下哪種姿態(tài)估計方法在處理這種機械結構時準確性更高?()A.基于模型的姿態(tài)估計B.基于深度學習的姿態(tài)估計C.基于視覺慣性里程計的姿態(tài)估計D.基于幾何約束的姿態(tài)估計2、在計算機視覺的行人重識別任務中,即在不同攝像頭拍攝的圖像中識別出同一個行人,假設行人的姿態(tài)和服裝發(fā)生了較大變化,以下哪種特征可能具有更強的魯棒性?()A.基于全局特征的描述B.基于局部特征的描述C.基于顏色特征的描述D.基于形狀特征的描述3、計算機視覺中的姿態(tài)估計任務是估計人體或物體在三維空間中的姿態(tài)。假設要估計一個人體模特的姿態(tài)。以下關于姿態(tài)估計的描述,哪一項是不正確的?()A.可以通過關鍵點檢測和關節(jié)角度計算來估計人體姿態(tài)B.深度學習中的卷積神經(jīng)網(wǎng)絡可以直接預測人體姿態(tài)的參數(shù)C.姿態(tài)估計在虛擬現(xiàn)實和增強現(xiàn)實等應用中具有重要作用D.姿態(tài)估計的結果總是非常準確,不受人體遮擋和復雜動作的影響4、假設要開發(fā)一個能夠自動識別水果種類和品質的計算機視覺系統(tǒng),用于水果分揀和質量評估。在獲取水果圖像時,可能會受到光照、角度和遮擋等因素的影響。為了提高識別的準確性和魯棒性,以下哪種圖像預處理技術可能是關鍵?()A.圖像增強B.圖像去噪C.圖像歸一化D.圖像分割5、在計算機視覺的三維重建任務中,假設要從一組不同角度拍攝的二維圖像中重建出物體的三維模型。這些圖像可能存在噪聲和拍攝誤差。為了獲得準確的三維重建結果,以下哪種技術是重要的?()A.基于立體視覺的方法,通過匹配不同圖像中的對應點B.直接使用二維圖像的平均信息來估計三維形狀C.忽略圖像中的噪聲和誤差,進行簡單的重建D.隨機生成三維模型,然后與二維圖像進行匹配6、在計算機視覺的動作識別任務中,區(qū)分不同的人體動作。假設要從一段視頻中識別出一個人是在跑步還是走路,以下關于動作識別方法的描述,正確的是:()A.基于骨架信息的動作識別方法對人體姿態(tài)的微小變化不敏感B.只考慮動作的空間特征就能準確識別不同的動作C.融合時空特征和深度學習模型能夠提升動作識別的準確率D.動作識別的結果不受視頻拍攝角度和背景干擾的影響7、在計算機視覺的圖像檢索任務中,假設要從一個大型圖像數(shù)據(jù)庫中快速找到與給定圖像相似的圖像。以下關于圖像檢索方法的描述,正確的是:()A.基于文本標注的圖像檢索方法依賴于人工標注的準確性和完整性,檢索效果不穩(wěn)定B.基于內容的圖像檢索通過提取圖像的特征進行相似性比較,但特征的選擇對檢索結果影響不大C.哈希方法能夠將高維的圖像特征映射為低維的哈希碼,大大提高檢索效率,但會損失一定的準確性D.所有的圖像檢索方法都能夠在大規(guī)模數(shù)據(jù)庫中實現(xiàn)實時、準確的檢索8、在計算機視覺的圖像特征提取中,假設要提取對光照、旋轉和縮放具有不變性的特征。以下關于特征提取方法的描述,正確的是:()A.SIFT特征具有良好的不變性,但計算復雜度高,實時性差B.HOG特征對光照變化適應性強,但對旋轉和縮放較敏感C.LBP特征能夠快速提取,但特征表達能力有限D.沒有一種特征提取方法能夠同時滿足對光照、旋轉和縮放的不變性要求9、計算機視覺在文物保護和修復中的應用逐漸增多。假設要對一幅古老的繪畫進行數(shù)字化修復和增強,以下關于顏色恢復的挑戰(zhàn),哪一項是最為顯著的?()A.由于年代久遠,原畫作的顏色信息缺失嚴重B.不同區(qū)域的顏色褪色程度不一致,難以統(tǒng)一恢復C.缺乏對原畫作創(chuàng)作時所用顏料的了解,難以準確還原顏色D.修復過程中可能引入新的顏色偏差,影響修復效果10、在一個基于計算機視覺的工業(yè)質量檢測系統(tǒng)中,需要檢測產(chǎn)品表面的微小缺陷,如劃痕、凹坑等。由于缺陷的尺寸較小且形態(tài)多樣,以下哪種圖像處理算法可能對缺陷檢測最為有效?()A.邊緣檢測算法B.形態(tài)學操作C.閾值分割算法D.霍夫變換11、圖像分割是將圖像分成不同的區(qū)域或對象。假設要對醫(yī)學影像中的腫瘤區(qū)域進行精確分割,以下關于圖像分割方法的描述,正確的是:()A.手動分割是最準確的方法,不需要借助計算機算法B.基于閾值的圖像分割方法能夠適用于所有類型的醫(yī)學影像分割問題C.深度學習中的全卷積網(wǎng)絡(FCN)及其變體在醫(yī)學圖像分割中具有很大的潛力D.圖像分割的結果只取決于所使用的分割算法,與圖像的預處理無關12、在計算機視覺的自動駕駛應用中,車輛需要準確識別道路標志、交通信號燈和其他車輛的狀態(tài)。對于實時性和準確性要求極高的場景,以下哪種傳感器融合技術能夠為車輛提供更全面和可靠的環(huán)境感知?()A.攝像頭與激光雷達的融合B.毫米波雷達與超聲波傳感器的融合C.多種攝像頭的融合D.以上都是13、在計算機視覺的圖像生成任務中,假設要生成逼真的人臉圖像。以下關于生成模型的架構選擇,哪一項是需要特別關注的?()A.選擇傳統(tǒng)的多層感知機(MLP)架構B.采用生成對抗網(wǎng)絡(GAN)架構,通過對抗訓練生成高質量圖像C.運用卷積神經(jīng)網(wǎng)絡(CNN)架構,但不使用池化層D.構建循環(huán)神經(jīng)網(wǎng)絡(RNN)架構,處理圖像的序列信息14、計算機視覺在醫(yī)學圖像分析中有著重要作用。假設要通過眼底圖像檢測糖尿病性視網(wǎng)膜病變,以下關于模型訓練中數(shù)據(jù)標注的難度,哪一項是最為顯著的?()A.病變區(qū)域的邊界模糊,難以精確標注B.眼底圖像的質量參差不齊,影響標注準確性C.標注人員的醫(yī)學知識不足,導致標注錯誤D.數(shù)據(jù)量過大,標注工作耗時費力15、計算機視覺在虛擬現(xiàn)實(VR)和增強現(xiàn)實(AR)中有著重要的應用。假設要在VR游戲中實現(xiàn)真實的場景交互。以下關于計算機視覺在VR/AR中的描述,哪一項是不正確的?()A.可以通過對用戶的動作和姿態(tài)進行識別,實現(xiàn)自然的交互操作B.能夠將虛擬物體與真實場景進行準確的融合和匹配C.計算機視覺技術可以提高VR/AR體驗的沉浸感和真實感D.VR/AR中的計算機視覺應用不存在任何技術挑戰(zhàn)和限制16、計算機視覺中的圖像去噪旨在去除圖像中的噪聲,恢復清晰的圖像。假設要處理一張受到嚴重噪聲污染的天文圖像,以下關于去噪算法的選擇,哪一項是需要謹慎考慮的?()A.選擇基于濾波的去噪算法,如中值濾波B.采用基于深度學習的去噪算法,如自編碼器C.只考慮去噪效果,不關心圖像細節(jié)的保留D.根據(jù)噪聲的類型和強度選擇合適的去噪算法17、在計算機視覺中,以下哪種方法常用于圖像的顯著目標檢測中的高層語義信息利用?()A.深度學習B.圖模型C.注意力機制D.以上都是18、在計算機視覺的圖像增強任務中,假設要提高一張低光照圖像的質量。以下關于圖像增強方法的描述,正確的是:()A.直方圖均衡化能夠均勻分布圖像的灰度級,但可能會導致細節(jié)丟失B.基于濾波的方法可以有效地去除噪聲,但同時也會模糊圖像的邊緣C.伽馬校正只適用于校正過亮的圖像,對于低光照圖像效果不佳D.所有的圖像增強方法都能夠在不引入任何失真的情況下提高圖像質量19、計算機視覺在衛(wèi)星遙感圖像分析中的應用可以幫助監(jiān)測地球環(huán)境和資源。假設要通過衛(wèi)星圖像分析森林的覆蓋面積變化。以下關于計算機視覺在衛(wèi)星遙感中的描述,哪一項是不準確的?()A.可以通過圖像分類和分割技術區(qū)分森林、草地和建筑物等不同地物類型B.能夠對多時相的衛(wèi)星圖像進行比較,監(jiān)測森林的生長和砍伐情況C.計算機視覺在衛(wèi)星遙感中的應用不受衛(wèi)星圖像的分辨率和光譜信息的限制D.可以結合地理信息系統(tǒng)(GIS)數(shù)據(jù),進行更深入的空間分析和決策支持20、計算機視覺在人臉識別領域取得了顯著進展。假設要開發(fā)一個人臉識別系統(tǒng),以下關于人臉識別技術的描述,哪一項是不正確的?()A.可以通過提取人臉的幾何特征、紋理特征或深度學習特征進行識別B.人臉識別系統(tǒng)通常需要進行活體檢測,以防止使用照片或視頻等欺詐手段C.大規(guī)模的人臉數(shù)據(jù)集和深度學習模型的結合,大大提高了人臉識別的準確率D.人臉識別技術在任何光照條件、姿態(tài)變化和表情變化下都能準確識別,不受這些因素的影響21、在計算機視覺的圖像生成任務中,除了生成新的圖像,還可以對已有圖像進行風格轉換。假設我們要將一張照片轉換為油畫風格,以下哪種方法能夠實現(xiàn)逼真的風格轉換效果?()A.基于圖像濾波和變換的方法B.基于深度學習的風格遷移算法,如CycleGANC.基于圖像融合和合成的方法D.基于顏色映射和紋理合成的方法22、在進行圖像配準(ImageRegistration)時,即對齊兩幅或多幅圖像,假設我們要將不同時間拍攝的同一地區(qū)的衛(wèi)星圖像進行配準,由于地形變化和拍攝角度的差異,以下哪個因素可能對配準精度產(chǎn)生最大影響?()A.圖像的分辨率B.選擇的特征點數(shù)量C.圖像的灰度值D.地理坐標信息的準確性23、計算機視覺中的醫(yī)學圖像分析對于疾病的診斷和治療具有重要意義。以下關于醫(yī)學圖像分析的描述,不準確的是()A.可以對X光、CT、MRI等醫(yī)學圖像進行病灶檢測、器官分割和疾病分類B.深度學習技術在醫(yī)學圖像分析中取得了顯著的成果,但也面臨數(shù)據(jù)標注困難和模型泛化能力不足的問題C.醫(yī)學圖像分析需要遵循嚴格的醫(yī)學標準和倫理規(guī)范,確保結果的準確性和可靠性D.醫(yī)學圖像分析完全依賴于計算機視覺技術,醫(yī)生的經(jīng)驗和專業(yè)知識不再重要24、在計算機視覺的目標跟蹤任務中,假設要跟蹤一個在人群中移動的物體。以下關于跟蹤算法的選擇,哪一項是需要著重考慮的?()A.算法對目標外觀變化的適應性B.算法的計算復雜度,越低越好C.算法是否能夠處理多個同時移動的目標D.算法在處理靜態(tài)場景時的性能25、在計算機視覺的車牌識別任務中,假設要從不同角度和光照條件下拍攝的車輛圖像中準確識別出車牌號碼。以下哪種技術可能有助于提高識別準確率?()A.字符分割和單獨識別B.利用深度學習模型進行端到端的識別C.只關注車牌的顏色特征D.隨機猜測車牌號碼26、在計算機視覺的三維重建任務中,假設要從一系列二維圖像重建出物體的三維模型。以下關于相機參數(shù)校準的重要性,哪一項是不正確的?()A.準確的相機參數(shù)有助于提高三維重建的精度B.相機參數(shù)校準可以減少重建過程中的誤差累積C.即使相機參數(shù)不準確,也能通過后續(xù)處理得到精確的三維模型D.不同相機的參數(shù)差異會影響三維重建的結果27、在一個基于計算機視覺的智能交通監(jiān)控系統(tǒng)中,需要對車輛的類型、速度和行駛軌跡進行分析。以下哪種技術在車輛分析方面可能發(fā)揮關鍵作用?()A.目標檢測和跟蹤B.車牌識別C.軌跡預測D.以上都是28、計算機視覺在智能零售中的應用可以改善購物體驗和提高運營效率。假設一個超市需要通過計算機視覺實現(xiàn)自動結賬和庫存管理。以下關于計算機視覺在智能零售中的描述,哪一項是不準確的?()A.可以通過商品識別技術自動識別顧客購買的商品,實現(xiàn)快速結賬B.能夠實時監(jiān)測貨架上商品的庫存水平,及時提醒補貨C.計算機視覺系統(tǒng)能夠準確識別所有商品的包裝和標簽,不受商品擺放方式和遮擋的影響D.可以分析顧客在店內的行為和偏好,為營銷策略提供數(shù)據(jù)支持29、視頻理解是計算機視覺中的一個具有挑戰(zhàn)性的任務。以下關于視頻理解的敘述,不準確的是()A.視頻理解不僅需要分析每一幀圖像的內容,還需要考慮幀之間的時間關系B.循環(huán)神經(jīng)網(wǎng)絡(RNN)和長短期記憶網(wǎng)絡(LSTM)在處理視頻序列數(shù)據(jù)時具有優(yōu)勢C.視頻理解在視頻監(jiān)控、行為分析和內容推薦等方面具有廣泛的應用前景D.目前的視頻理解技術已經(jīng)能夠完全理解復雜場景下的視頻內容,不存在任何挑戰(zhàn)30、在圖像配準任務中,需要將不同時間、不同視角或不同傳感器獲取的圖像進行對齊。假設我們要將一張衛(wèi)星圖像與一張航拍圖像進行配準,以下哪個因素對于配準的準確性影響最大?()A.圖像的分辨率差異B.圖像的旋轉和平移C.圖像的光照條件D.圖像中的噪聲二、應用題(本大題共5個小題,共25分)1、(本題5分)運用深度學習模型,對古代建筑的風格和年代進行鑒定。2、(本題5分)運用深度學習模型,對古代書法作品的作者和流派進行鑒定。3、(本題5分)通過圖像分類算法,對不同風格的珠寶設計圖像進行分類。4、(本題5分)基于深度學習的圖像生成模型,生成具有特定風格的藝術圖像。5、(本題5分)運用圖像識別算法,對不同類型的自行車圖像進

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論