




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 【匯總】高中數(shù)學(xué)解題基本方法一、 配方法配方法是對(duì)數(shù)學(xué)式子進(jìn)行一種定向變形(配成“完全平方”)的技巧,通過配方找到已知和未知的聯(lián)系,從而化繁為簡(jiǎn)。何時(shí)配方,需要我們適當(dāng)預(yù)測(cè),并且合理運(yùn)用“裂項(xiàng)”與“添項(xiàng)”、“配”與“湊”的技巧,從而完成配方。有時(shí)也將其稱為“湊配法”。最常見的配方是進(jìn)行恒等變形,使數(shù)學(xué)式子出現(xiàn)完全平方。它主要適用于:已知或者未知中含有二次方程、二次不等式、二次函數(shù)、二次代數(shù)式的討論與求解,或者缺xy項(xiàng)的二次曲線的平移變換等問題。配方法使用的最基本的配方依據(jù)是二項(xiàng)完全平方公式(ab)a2abb,將這個(gè)公式靈活運(yùn)用,可得到各種基本配方形式,如:ab(ab)2ab(ab)2ab;a
2、abb(ab)ab(ab)3ab(a)(b);abcabbcca(ab)(bc)(ca)abc(abc)2(abbcca)(abc)2(abbcca)結(jié)合其它數(shù)學(xué)知識(shí)和性質(zhì),相應(yīng)有另外的一些配方形式,如:1sin212sincos(sincos);x(x)2(x)2 ; 等等。、再現(xiàn)性題組:1. 在正項(xiàng)等比數(shù)列a中,asa+2asa+aa=25,則 aa_。2. 方程xy4kx2y5k0表示圓的充要條件是_。 A. k1 B. k1 C. kR D. k或k13. 已知sincos1,則sincos的值為_。 A. 1 B. 1 C. 1或1 D. 04. 函數(shù)ylog (2x5x3)的單調(diào)遞
3、增區(qū)間是_。 A. (, B. ,+) C. (, D. ,3)5. 已知方程x+(a-2)x+a-1=0的兩根x、x,則點(diǎn)P(x,x)在圓x+y=4上,則實(shí)數(shù)a_?!竞?jiǎn)解】 1小題:利用等比數(shù)列性質(zhì)aaa,將已知等式左邊后配方(aa)易求。答案是:5。 2小題:配方成圓的標(biāo)準(zhǔn)方程形式(xa)(yb)r,解r0即可,選B。 3小題:已知等式經(jīng)配方成(sincos)2sincos1,求出sincos,然后求出所求式的平方值,再開方求解。選C。4小題:配方后得到對(duì)稱軸,結(jié)合定義域和對(duì)數(shù)函數(shù)及復(fù)合函數(shù)的單調(diào)性求解。選D。5小題:答案3。、示范性題組:例1. 已知長(zhǎng)方體的全面積為11,其12條棱的長(zhǎng)度
4、之和為24,則這個(gè)長(zhǎng)方體的一條對(duì)角線長(zhǎng)為_。 A. 2 B. C. 5 D. 6【分析】 先轉(zhuǎn)換為數(shù)學(xué)表達(dá)式:設(shè)長(zhǎng)方體長(zhǎng)寬高分別為x,y,z,則 ,而欲求對(duì)角線長(zhǎng),將其配湊成兩已知式的組合形式可得?!窘狻吭O(shè)長(zhǎng)方體長(zhǎng)寬高分別為x,y,z,由已知“長(zhǎng)方體的全面積為11,其12條棱的長(zhǎng)度之和為24”而得:。長(zhǎng)方體所求對(duì)角線長(zhǎng)為:5所以選B?!咀ⅰ勘绢}解答關(guān)鍵是在于將兩個(gè)已知和一個(gè)未知轉(zhuǎn)換為三個(gè)數(shù)學(xué)表示式,觀察和分析三個(gè)數(shù)學(xué)式,容易發(fā)現(xiàn)使用配方法將三個(gè)數(shù)學(xué)式進(jìn)行聯(lián)系,即聯(lián)系了已知和未知,從而求解。這也是我們使用配方法的一種解題模式。例2. 設(shè)方程xkx2=0的兩實(shí)根為p、q,若()+()7成立,求實(shí)數(shù)
5、k的取值范圍?!窘狻糠匠蘹kx2=0的兩實(shí)根為p、q,由韋達(dá)定理得:pqk,pq2 ,()+()7, 解得k或k 。又 p、q為方程xkx2=0的兩實(shí)根, k80即k2或k2綜合起來(lái),k的取值范圍是:k 或者 k?!咀ⅰ?關(guān)于實(shí)系數(shù)一元二次方程問題,總是先考慮根的判別式“”;已知方程有兩根時(shí),可以恰當(dāng)運(yùn)用韋達(dá)定理。本題由韋達(dá)定理得到pq、pq后,觀察已知不等式,從其結(jié)構(gòu)特征聯(lián)想到先通分后配方,表示成pq與pq的組合式。假如本題不對(duì)“”討論,結(jié)果將出錯(cuò),即使有些題目可能結(jié)果相同,去掉對(duì)“”的討論,但解答是不嚴(yán)密、不完整的,這一點(diǎn)我們要尤為注意和重視。例3. 設(shè)非零復(fù)數(shù)a、b滿足aabb=0,求(
6、)() ?!痉治觥?對(duì)已知式可以聯(lián)想:變形為()()10,則 (為1的立方虛根);或配方為(ab)ab 。則代入所求式即得?!窘狻坑蒩abb=0變形得:()()10 ,設(shè),則10,可知為1的立方虛根,所以:,1。又由aabb=0變形得:(ab)ab ,所以 ()()()()()()2 ?!咀ⅰ?本題通過配方,簡(jiǎn)化了所求的表達(dá)式;巧用1的立方虛根,活用的性質(zhì),計(jì)算表達(dá)式中的高次冪。一系列的變換過程,有較大的靈活性,要求我們善于聯(lián)想和展開?!玖斫狻坑蒩abb0變形得:()()10 ,解出后,化成三角形式,代入所求表達(dá)式的變形式()()后,完成后面的運(yùn)算。此方法用于只是未聯(lián)想到時(shí)進(jìn)行解題。假如本題沒
7、有想到以上一系列變換過程時(shí),還可由aabb0解出:ab,直接代入所求表達(dá)式,進(jìn)行分式化簡(jiǎn)后,化成復(fù)數(shù)的三角形式,利用棣莫佛定理完成最后的計(jì)算。、鞏固性題組:1. 函數(shù)y(xa)(xb) (a、b為常數(shù))的最小值為_。A. 8 B. C. D.最小值不存在2. 、是方程x2axa60的兩實(shí)根,則(-1) +(-1)的最小值是_。A. B. 8 C. 18 D.不存在3. 已知x、yR,且滿足x3y10,則函數(shù)t28有_。A.最大值2 B.最大值 C.最小值2 B.最小值4. 橢圓x2ax3ya60的一個(gè)焦點(diǎn)在直線xy40上,則a_。A. 2 B. 6 C. 2或6 D. 2或65. 化簡(jiǎn):2的結(jié)
8、果是_。A. 2sin4 B. 2sin44cos4 C. 2sin4 D. 4cos42sin4 6. 設(shè)F和F為雙曲線y1的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上且滿足FPF90,則FPF的面積是_。7. 若x1,則f(x)x2x的最小值為_。8. 已知,cos(-),sin(+),求sin2的值。(92年高考題)9. 設(shè)二次函數(shù)f(x)AxBxC,給定m、n(m0; 是否存在一個(gè)實(shí)數(shù)t,使當(dāng)t(m+t,n-t)時(shí),f(x)1,t1,mR,xlogtlogs,ylogtlogsm(logtlogs), 將y表示為x的函數(shù)yf(x),并求出f(x)的定義域; 若關(guān)于x的方程f(x)0有且僅有一個(gè)實(shí)根,求m
9、的取值范圍。二、換元法解數(shù)學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問題得到簡(jiǎn)化,這叫換元法。換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對(duì)象,將問題移至新對(duì)象的知識(shí)背景中去研究,從而使非標(biāo)準(zhǔn)型問題標(biāo)準(zhǔn)化、復(fù)雜問題簡(jiǎn)單化,變得容易處理。換元法又稱輔助元素法、變量代換法。通過引進(jìn)新的變量,可以把分散的條件聯(lián)系起來(lái),隱含的條件顯露出來(lái),或者把條件與結(jié)論聯(lián)系起來(lái)。或者變?yōu)槭煜さ男问?,把?fù)雜的計(jì)算和推證簡(jiǎn)化。它可以化高次為低次、化分式為整式、化無(wú)理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應(yīng)用。換元的方法有:局部換元、
10、三角換元、均值換元等。局部換元又稱整體換元,是在已知或者未知中,某個(gè)代數(shù)式幾次出現(xiàn),而用一個(gè)字母來(lái)代替它從而簡(jiǎn)化問題,當(dāng)然有時(shí)候要通過變形才能發(fā)現(xiàn)。例如解不等式:4220,先變形為設(shè)2t(t0),而變?yōu)槭煜さ囊辉尾坏仁角蠼夂椭笖?shù)方程的問題。三角換元,應(yīng)用于去根號(hào),或者變換為三角形式易求時(shí),主要利用已知代數(shù)式中與三角知識(shí)中有某點(diǎn)聯(lián)系進(jìn)行換元。如求函數(shù)y的值域時(shí),易發(fā)現(xiàn)x0,1,設(shè)xsin ,0,,問題變成了熟悉的求三角函數(shù)值域。為什么會(huì)想到如此設(shè),其中主要應(yīng)該是發(fā)現(xiàn)值域的聯(lián)系,又有去根號(hào)的需要。如變量x、y適合條件xyr(r0)時(shí),則可作三角代換xrcos、yrsin化為三角問題。均值換元,
11、如遇到xyS形式時(shí),設(shè)xt,yt等等。我們使用換元法時(shí),要遵循有利于運(yùn)算、有利于標(biāo)準(zhǔn)化的原則,換元后要注重新變量范圍的選取,一定要使新變量范圍對(duì)應(yīng)于原變量的取值范圍,不能縮小也不能擴(kuò)大。如上幾例中的t0和0,。、再現(xiàn)性題組:1.ysinxcosxsinx+cosx的最大值是_。2.設(shè)f(x1)log(4x) (a1),則f(x)的值域是_。3.已知數(shù)列a中,a1,aaaa,則數(shù)列通項(xiàng)a_。4.設(shè)實(shí)數(shù)x、y滿足x2xy10,則xy的取值范圍是_。5.方程3的解是_。6.不等式log(21) log(22)2的解集是_?!竞?jiǎn)解】1小題:設(shè)sinx+cosxt,,則yt,對(duì)稱軸t1,當(dāng)t,y;2小題
12、:設(shè)x1t (t1),則f(t)log-(t-1)4,所以值域?yàn)?,log4;3小題:已知變形為1,設(shè)b,則b1,b1(n1)(-1)n,所以a;4小題:設(shè)xyk,則x2kx10, 4k40,所以k1或k1;5小題:設(shè)3y,則3y2y10,解得y,所以x1;6小題:設(shè)log(21)y,則y(y1)2,解得2y0,求f(x)2a(sinxcosx)sinxcosx2a的最大值和最小值?!窘狻?設(shè)sinxcosxt,則t-,,由(sinxcosx)12sinxcosx得:sinxcosx f(x)g(t)(t2a) (a0),t-,t-時(shí),取最小值:2a2a當(dāng)2a時(shí),t,取最大值:2a2a ;當(dāng)0
13、0恒成立,求a的取值范圍。(87年全國(guó)理)【分析】不等式中l(wèi)og、 log、log三項(xiàng)有何聯(lián)系?進(jìn)行對(duì)數(shù)式的有關(guān)變形后不難發(fā)現(xiàn),再實(shí)施換元法?!窘狻?設(shè)logt,則loglog3log3log3t,log2log2t,代入后原不等式簡(jiǎn)化為(3t)x2tx2t0,它對(duì)一切實(shí)數(shù)x恒成立,所以:,解得 t0即log001,解得0a0恒成立,求k的范圍。【分析】由已知條件1,可以發(fā)現(xiàn)它與ab1有相似之處,于是實(shí)施三角換元?!窘狻坑?,設(shè)cos,sin,即: 代入不等式xyk0得:3cos4sink0,即k3cos4sin5sin(+) 所以k0 (a0)所表示的區(qū)域?yàn)橹本€axbyc0所分平面成兩部分中
14、含x軸正方向的一部分。此題不等式恒成立問題化為圖形問題:橢圓上的點(diǎn)始終位于平面上xyk0的區(qū)域。即當(dāng)直線xyk0在與橢圓下部相切的切線之下時(shí)。當(dāng)直線與橢圓相切時(shí),方程組有相等的一組實(shí)數(shù)解,消元后由0可求得k3,所以k0),則f(4)的值為_。A. 2lg2 B. lg2 C. lg2 D. lg42. 函數(shù)y(x1)2的單調(diào)增區(qū)間是_。A. -2,+) B. -1,+) D. (-,+) C. (-,-13. 設(shè)等差數(shù)列a的公差d,且S145,則aaaa的值為_。A. 85 B. 72.5 C. 60 D. 52.54. 已知x4y4x,則xy的范圍是_。5. 已知a0,b0,ab1,則的范圍
15、是_。6. 不等式ax的解集是(4,b),則a_,b_。7. 函數(shù)y2x的值域是_。8. 在等比數(shù)列a中,aaa2,aaa12,求aaa。 y D C A B O x9. 實(shí)數(shù)m在什么范圍內(nèi)取值,對(duì)任意實(shí)數(shù)x,不等式sinx2mcosx4m10,y0)上移動(dòng),且AB、AD始終平行x軸、y軸,求矩形ABCD的最小面積。 三、待定系數(shù)法要確定變量間的函數(shù)關(guān)系,設(shè)出某些未知系數(shù),然后根據(jù)所給條件來(lái)確定這些未知系數(shù)的方法叫待定系數(shù)法,其理論依據(jù)是多項(xiàng)式恒等,也就是利用了多項(xiàng)式f(x)g(x)的充要條件是:對(duì)于一個(gè)任意的a值,都有f(a)g(a);或者兩個(gè)多項(xiàng)式各同類項(xiàng)的系數(shù)對(duì)應(yīng)相等。待定系數(shù)法解題的關(guān)
16、鍵是依據(jù)已知,正確列出等式或方程。使用待定系數(shù)法,就是把具有某種確定形式的數(shù)學(xué)問題,通過引入一些待定的系數(shù),轉(zhuǎn)化為方程組來(lái)解決,要判斷一個(gè)問題是否用待定系數(shù)法求解,主要是看所求解的數(shù)學(xué)問題是否具有某種確定的數(shù)學(xué)表達(dá)式,如果具有,就可以用待定系數(shù)法求解。例如分解因式、拆分分式、數(shù)列求和、求函數(shù)式、求復(fù)數(shù)、解析幾何中求曲線方程等,這些問題都具有確定的數(shù)學(xué)表達(dá)形式,所以都可以用待定系數(shù)法求解。使用待定系數(shù)法,它解題的基本步驟是:第一步,確定所求問題含有待定系數(shù)的解析式;第二步,根據(jù)恒等的條件,列出一組含待定系數(shù)的方程;第三步,解方程組或者消去待定系數(shù),從而使問題得到解決。如何列出一組含待定系數(shù)的方程
17、,主要從以下幾方面著手分析: 利用對(duì)應(yīng)系數(shù)相等列方程; 由恒等的概念用數(shù)值代入法列方程; 利用定義本身的屬性列方程; 利用幾何條件列方程。比如在求圓錐曲線的方程時(shí),我們可以用待定系數(shù)法求方程:首先設(shè)所求方程的形式,其中含有待定的系數(shù);再把幾何條件轉(zhuǎn)化為含所求方程未知系數(shù)的方程或方程組;最后解所得的方程或方程組求出未知的系數(shù),并把求出的系數(shù)代入已經(jīng)明確的方程形式,得到所求圓錐曲線的方程。、再現(xiàn)性題組:1. 設(shè)f(x)m,f(x)的反函數(shù)f(x)nx5,那么m、n的值依次為_。A. , 2 B. , 2 C. , 2 D. ,22. 二次不等式axbx20的解集是(,),則ab的值是_。A. 10
18、 B. 10 C. 14 D. 143. 在(1x)(1x)的展開式中,x的系數(shù)是_。A. 297 B.252 C. 297 D. 2074. 函數(shù)yabcos3x (b0,7x0,x0。設(shè)V(15aax)(7bbx)x (a0,b0) 要使用均值不等式,則解得:a, b , x3 。 從而V()(x)x()27576。所以當(dāng)x3時(shí),矩形盒子的容積最大,最大容積是576cm?!咀ⅰ烤挡坏仁綉?yīng)用時(shí)要注意等號(hào)成立的條件,當(dāng)條件不滿足時(shí)要湊配系數(shù),可以用“待定系數(shù)法”求。本題解答中也可以令V(15aax)(7x)bx 或 (15x)(7aax)bx,再由使用均值不等式的最佳條件而列出方程組,求出三
19、項(xiàng)該進(jìn)行湊配的系數(shù),本題也體現(xiàn)了“湊配法”和“函數(shù)思想”。、鞏固性題組:1. 函數(shù)ylogx的x2,+)上恒有|y|1,則a的取值范圍是_。A. 2a且a1 B. 0a或1a2 C. 1a2或0a2. 方程xpxq0與xqxp0只有一個(gè)公共根,則其余兩個(gè)不同根之和為_。A. 1 B. 1 C. pq D. 無(wú)法確定 3. 如果函數(shù)ysin2xacos2x的圖像關(guān)于直線x對(duì)稱,那么a_。A. B. C. 1 D. 14. 滿足C1C2CnC500的最大正整數(shù)是_。A. 4 B. 5 C. 6 D. 75. 無(wú)窮等比數(shù)列a的前n項(xiàng)和為Sa , 則所有項(xiàng)的和等于_。A. B. 1 C. D.與a有關(guān)
20、6. (1kx)bbxbxbx,若bbbb1,則k_。7. 經(jīng)過兩直線11x3y90與12xy190的交點(diǎn),且過點(diǎn)(3,-2)的直線方程為_。 8. 正三棱錐底面邊長(zhǎng)為2,側(cè)棱和底面所成角為60,過底面一邊作截面,使其與底面成30角,則截面面積為_。9. 設(shè)yf(x)是一次函數(shù),已知f(8)15,且f(2)、f(5)、(f14)成等比數(shù)列,求f(1)f(2)f(m)的值。10. 設(shè)拋物線經(jīng)過兩點(diǎn)(-1,6)和(-1,-2),對(duì)稱軸與x軸平行,開口向右,直線y2x7和拋物線截得的線段長(zhǎng)是4, 求拋物線的方程四、定義法所謂定義法,就是直接用數(shù)學(xué)定義解題。數(shù)學(xué)中的定理、公式、性質(zhì)和法則等,都是由定義
21、和公理推演出來(lái)。定義是揭示概念內(nèi)涵的邏輯方法,它通過指出概念所反映的事物的本質(zhì)屬性來(lái)明確概念。定義是千百次實(shí)踐后的必然結(jié)果,它科學(xué)地反映和揭示了客觀世界的事物的本質(zhì)特點(diǎn)。簡(jiǎn)單地說,定義是基本概念對(duì)數(shù)學(xué)實(shí)體的高度抽象。用定義法解題,是最直接的方法,本講讓我們回到定義中去。、再現(xiàn)性題組:1. 已知集合A中有2個(gè)元素,集合B中有7個(gè)元素,AB的元素個(gè)數(shù)為n,則_。A. 2n9 B. 7n9 C. 5n9 D. 5n72. 設(shè)MP、OM、AT分別是46角的正弦線、余弦線和正切線,則_。A. MPOMAT B. OMMPAT C. ATOMMP D. OMATMP3. 復(fù)數(shù)za2,z2,如果|z| |z
22、|,則實(shí)數(shù)a的取值范圍是_。A. 1a1 C. a0 D. a14. 橢圓1上有一點(diǎn)P,它到左準(zhǔn)線的距離為,那么P點(diǎn)到右焦點(diǎn)的距離為_。A. 8 C. 7.5 C. D. 35. 奇函數(shù)f(x)的最小正周期為T,則f()的值為_。A. T B. 0 C. D. 不能確定6. 正三棱臺(tái)的側(cè)棱與底面成45角,則其側(cè)面與底面所成角的正切值為_?!竞?jiǎn)解】1小題:利用并集定義,選B;2小題:利用三角函數(shù)線定義,作出圖形,選B;3小題:利用復(fù)數(shù)模的定義得0得:0x1設(shè)xx, x+x (x+x)( x+x)1 f(x)f(x)0即f(x)在(,1)上是減函數(shù) 0的解集是(1,2),則不等式bxcxab0)的
23、兩個(gè)焦點(diǎn),其中F與拋物線y12x的焦點(diǎn)重合,M是兩曲線的一個(gè)焦點(diǎn),且有cosM FFcosMFF,求橢圓方程。五、數(shù)學(xué)歸納法歸納是一種有特殊事例導(dǎo)出一般原理的思維方法。歸納推理分完全歸納推理與不完全歸納推理兩種。不完全歸納推理只根據(jù)一類事物中的部分對(duì)象具有的共同性質(zhì),推斷該類事物全體都具有的性質(zhì),這種推理方法,在數(shù)學(xué)推理論證中是不允許的。完全歸納推理是在考察了一類事物的全部對(duì)象后歸納得出結(jié)論來(lái)。數(shù)學(xué)歸納法是用來(lái)證明某些與自然數(shù)有關(guān)的數(shù)學(xué)命題的一種推理方法,在解數(shù)學(xué)題中有著廣泛的應(yīng)用。它是一個(gè)遞推的數(shù)學(xué)論證方法,論證的第一步是證明命題在n1(或n)時(shí)成立,這是遞推的基礎(chǔ);第二步是假設(shè)在nk時(shí)命題
24、成立,再證明nk1時(shí)命題也成立,這是無(wú)限遞推下去的理論依據(jù),它判斷命題的正確性能否由特殊推廣到一般,實(shí)際上它使命題的正確性突破了有限,達(dá)到無(wú)限。這兩個(gè)步驟密切相關(guān),缺一不可,完成了這兩步,就可以斷定“對(duì)任何自然數(shù)(或nn且nN)結(jié)論都正確”。由這兩步可以看出,數(shù)學(xué)歸納法是由遞推實(shí)現(xiàn)歸納的,屬于完全歸納。運(yùn)用數(shù)學(xué)歸納法證明問題時(shí),關(guān)鍵是nk1時(shí)命題成立的推證,此步證明要具有目標(biāo)意識(shí),注意與最終要達(dá)到的解題目標(biāo)進(jìn)行分析比較,以此確定和調(diào)控解題的方向,使差異逐步減小,最終實(shí)現(xiàn)目標(biāo)完成解題。運(yùn)用數(shù)學(xué)歸納法,可以證明下列問題:與自然數(shù)n有關(guān)的恒等式、代數(shù)不等式、三角不等式、數(shù)列問題、幾何問題、整除性問題
25、等等。、再現(xiàn)性題組:1. 用數(shù)學(xué)歸納法證明(n1)(n2)(nn)212(2n1) (nN),從“k到k1”,左端需乘的代數(shù)式為_。 A. 2k1 B. 2(2k1) C. D. 2. 用數(shù)學(xué)歸納法證明11)時(shí),由nk (k1)不等式成立,推證nk1時(shí),左邊應(yīng)增加的代數(shù)式的個(gè)數(shù)是_。 A. 2 B. 21 C. 2 D. 213. 某個(gè)命題與自然數(shù)n有關(guān),若nk (kN)時(shí)該命題成立,那么可推得nk1時(shí)該命題也成立?,F(xiàn)已知當(dāng)n5時(shí)該命題不成立,那么可推得_。 (94年上海高考) A.當(dāng)n6時(shí)該命題不成立 B.當(dāng)n6時(shí)該命題成立 C.當(dāng)n4時(shí)該命題不成立 D.當(dāng)n4時(shí)該命題成立4. 數(shù)列a中,已
26、知a1,當(dāng)n2時(shí)aa2n1,依次計(jì)算a、a、a后,猜想a的表達(dá)式是_。 A. 3n2 B. n C. 3 D. 4n35. 用數(shù)學(xué)歸納法證明35 (nN)能被14整除,當(dāng)nk1時(shí)對(duì)于式子35應(yīng)變形為_。6. 設(shè)k棱柱有f(k)個(gè)對(duì)角面,則k1棱柱對(duì)角面的個(gè)數(shù)為f(k+1)f(k)_?!竞?jiǎn)解】1小題:nk時(shí),左端的代數(shù)式是(k1)(k2)(kk),nk1時(shí),左端的代數(shù)式是(k2)(k3)(2k1)(2k2),所以應(yīng)乘的代數(shù)式為,選B;2小題:(21)(21)2,選C;3小題:原命題與逆否命題等價(jià),若nk1時(shí)命題不成立,則nk命題不成立,選C。4小題:計(jì)算出a1、a4、a9、a16再猜想a,選B;
27、5小題:答案(35)35(53);6小題:答案k1。、示范性題組:例1. 已知數(shù)列,得,。S為其前n項(xiàng)和,求S、S、S、S,推測(cè)S公式,并用數(shù)學(xué)歸納法證明。 (93年全國(guó)理)【解】 計(jì)算得S,S,S,S , 猜測(cè)S (nN)。當(dāng)n1時(shí),等式顯然成立;假設(shè)當(dāng)nk時(shí)等式成立,即:S,當(dāng)nk1時(shí),SS,由此可知,當(dāng)nk1時(shí)等式也成立。綜上所述,等式對(duì)任何nN都成立?!咀ⅰ?把要證的等式S作為目標(biāo),先通分使分母含有(2k3),再考慮要約分,而將分子變形,并注意約分后得到(2k3)1。這樣證題過程中簡(jiǎn)潔一些,有效地確定了證題的方向。本題的思路是從試驗(yàn)、觀察出發(fā),用不完全歸納法作出歸納猜想,再用數(shù)學(xué)歸納法進(jìn)行嚴(yán)格證明,這是關(guān)于探索性問題的常見證法,在數(shù)列問題中經(jīng)常見到。 假如猜想后不用數(shù)學(xué)歸納法證明,結(jié)論不一定正確,即使正確,解答過程也不嚴(yán)密。必須要進(jìn)行三步
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆河北省永年縣一中高一物理第二學(xué)期期末監(jiān)測(cè)模擬試題含解析
- 教育技術(shù)應(yīng)用與文化傳承的關(guān)系研究
- 教育技術(shù)中的專利申請(qǐng)與風(fēng)險(xiǎn)規(guī)避
- 2025屆江西省豐城二中高二物理第二學(xué)期期末預(yù)測(cè)試題含解析
- 2025屆廣東省廣州市番禺區(qū)禺山高級(jí)中學(xué)物理高一下期末調(diào)研模擬試題含解析
- 探索教育游戲化如何影響孩子的情緒認(rèn)知能力
- 教育技術(shù)項(xiàng)目的投資規(guī)劃與風(fēng)險(xiǎn)控制
- 福建省師范大學(xué)附中2025年高一物理第二學(xué)期期末考試試題含解析
- 醫(yī)療培訓(xùn)中融入教育心理學(xué)的效果評(píng)估
- 技術(shù)如何塑造現(xiàn)代辦公模式
- 暑假的一次冒險(xiǎn)經(jīng)歷記事作文4篇范文
- 入職預(yù)支薪資協(xié)議書
- 《中國(guó)特色社會(huì)主義理論體系的形成和發(fā)展》(課件)
- 職業(yè)技術(shù)學(xué)院嬰幼兒托育服務(wù)與管理專業(yè)人才培養(yǎng)方案
- 2025臺(tái)州市椒江區(qū)輔警考試試卷真題
- 中學(xué)生零食消費(fèi)情況調(diào)查與分析
- 國(guó)開本科《管理英語(yǔ)4》機(jī)考總題庫(kù)及答案
- 軟裝行業(yè)競(jìng)品分析報(bào)告
- 公司收購(gòu)公司協(xié)議書
- 基于移動(dòng)端的互聯(lián)網(wǎng)金融服務(wù)創(chuàng)新研究
- T∕CACM 024-2017 中醫(yī)臨床實(shí)踐指南 穴位埋線減肥
評(píng)論
0/150
提交評(píng)論