




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、學(xué)啟于思 思源于疑,2002年世界數(shù)學(xué)家大會(huì)在北京舉行,北京歡迎您!,勾股定理回顧與思考,八年級(jí)數(shù)學(xué)(上冊(cè)) 北師大版,華羅庚,1、在ABC中,C90,a、b、c為三角形的三邊,則,角與角之間的關(guān)系為:,議一議:,a2 + b2 = c2,邊與邊之間的關(guān)系為:,AB90,2、在ABC中, a、b、c為三角形的三邊, 如果 ,則ABC是直角三角形 。 如果 , 則ABC是直角三角形 。,AB90,a2 + b2 = c2,如果直角三角形兩直角邊分別為a,b,斜邊為c,那么,勾股定理,a2 + b2 = c2,即直角三角形兩直角邊的平方和等于斜邊的平方.,直角三角形的判別條件,如果三角形的三邊長(zhǎng)a
2、,b,c滿足a2 +b2=c2 , 那么這個(gè)三角形是直角三角形.,滿足a2 +b2=c2的三個(gè)正整數(shù),稱為勾股數(shù).,“補(bǔ)”,“拼”,“割”,方法一:,方法二:,方法三:,分割為四個(gè)直角三角形和一個(gè)小正方形,補(bǔ)成大正方形,用大正方形的面積減去四個(gè)直角三角形的面積,將幾個(gè)小塊拼成一個(gè)正方形,如圖中兩塊紅色(或綠色)可拼成一個(gè)小正方形,勾股定理的驗(yàn)證,史話勾股定理的證明,一、三國(guó)時(shí)期數(shù)學(xué)家趙爽在為周髀算經(jīng)作注時(shí),創(chuàng)制了一幅“勾股圓方圖”,也稱為“弦圖”,這是我國(guó)對(duì)勾股定理最早的證明.它用幾何圖形來(lái)證明代數(shù)式之間的恒等關(guān)系,體現(xiàn)了以形證數(shù)、形數(shù)統(tǒng)一、代數(shù)和幾何的緊密結(jié)合 .,二、 傳說(shuō)古希臘的畢達(dá)哥拉
3、斯用下面的兩個(gè)圖形證明了勾股定理,你能直接觀察驗(yàn)證勾股定理嗎?,兩幅圖中彩色的四個(gè)直角三角形總面積呢?,提示:圖中的兩個(gè)大正方形面積相等嗎?,那么剩余的空白部分的面積呢?,美國(guó)總統(tǒng)伽菲爾德的證明,劉徽的“青朱出入圖”,著名畫(huà)家達(dá)芬奇的證明,美麗的勾股樹(shù),數(shù)學(xué)思想方法是解決數(shù)學(xué)問(wèn)題的靈魂正解的運(yùn)用數(shù)學(xué)思想方法也是成功解題的關(guān)鍵尤其是在運(yùn)用勾股定理解題時(shí),更應(yīng)注重思想方法的運(yùn)用,那么你知道哪些思想方法呢?,勾股定理中的思想方法,1、已知一個(gè)直角三角形的兩邊長(zhǎng)是3和4 ,求第三邊的長(zhǎng),類型之一 分類討論思想,解:當(dāng)3和4 是兩條直角邊時(shí),則利用勾股定理求得第三條邊即斜邊是 = 5 ; 當(dāng)3 是直角邊
4、, 4 是斜邊時(shí),由勾股定理求得另一條直角邊是 ,分析:已知一個(gè)直角三角形的兩邊長(zhǎng),并沒(méi)有指明是直角邊還是斜邊,因此要分類討論.,拓展與應(yīng)用,2、如圖,是一個(gè)三級(jí)臺(tái)階,它的每一級(jí)的長(zhǎng)、寬和高分別等于cm,3cm和1cm,A和B是這個(gè)臺(tái)階的兩個(gè)相對(duì)的端點(diǎn),A點(diǎn)上有一只螞蟻,想到B點(diǎn)去吃可口的食物。請(qǐng)你想一想,這只螞蟻從A點(diǎn)出發(fā),沿著臺(tái)階面爬到B點(diǎn),最短路線是多少?,B,A,解:臺(tái)階展開(kāi)成平面圖形如圖所示,連接AB 因?yàn)锽 ,AC=5 , 由勾股定理得 AB2=AC2+BC2 =144+25=169, ,所以螞蟻爬行的最短路線為 。,類型之二 轉(zhuǎn)化思想 臺(tái)階中的最值問(wèn)題,3、如圖,在波平如鏡的湖面
5、上,有一朵美麗的紅蓮,它高出水面3尺。突然,一陣大風(fēng)吹過(guò),紅蓮被吹至一邊,花朵剛好齊及水面,如果知道紅蓮移動(dòng)的水平距離為6尺,請(qǐng)問(wèn)水深多少?,圖1(1),解:如圖,設(shè)水深為x尺,則荷花的長(zhǎng)為(x+3)尺,由勾股定理得:62+ x2 = (x+3)2 解得:x=4.5, 所以這個(gè)湖的水深為4.5尺,A,B,C,類型之三 方程思想,分析:由題意,我們知在圖1-1中為AB為湖水的深度,AC為荷花的長(zhǎng),ABC為直角三角形,類型之四 數(shù)形結(jié)合思想,例如:甲、乙兩船從港口A同時(shí)出發(fā),甲船以30海里/小時(shí)的速度向北偏東35的方向航行,乙船以40海里/小時(shí)的速度另一個(gè)方向航行,2小時(shí)后,甲船達(dá)到C島,乙船到達(dá)
6、B島。若兩島相距100海里,問(wèn):乙船航行的方向是南偏東多少度?,應(yīng)用勾股定理及其逆用解決有關(guān)航海問(wèn)題的應(yīng)用題,首先要能從實(shí)際問(wèn)題中抽象出數(shù)學(xué)模型,畫(huà)出圖形,利用數(shù)形結(jié)合的思想解決問(wèn)題。,解:如圖所示,在ABC中,因?yàn)锳C=2 30=60海里,AB=2 40=80海里,BC=100海里, AC2+BC2=602+802=3600+6400 =10000=1002=BC2, 所以 ABC是直角三角形,且BAC=90. 由于18035 90= 55,所以乙船航行的方向是南偏東55 。,1、已知一個(gè)RtABC的兩邊長(zhǎng)分別為3和4,則以第三邊為邊的正方形的面積是,跟蹤練習(xí),分析:此題并沒(méi)有告訴我們已知的
7、邊長(zhǎng)4一定是直角邊,而4有可能是斜邊,因此要分類討論解:當(dāng)4為直角邊時(shí),根據(jù)勾股定理第三邊長(zhǎng)的平方是25;當(dāng)4為斜邊時(shí),第三邊長(zhǎng)的平方為:42-32=7,因此正方形的面積是:25或7,25 或 7。,2、有一個(gè)圓柱,它的高等于13厘米,底面半徑等于3厘米.一只螞蟻從距底面1米的A點(diǎn)爬行到對(duì)角B點(diǎn)處去吃食物,需要爬行的最短路程是多少?(的值取3).,圓柱(錐)中的最短問(wèn)題,跟蹤練習(xí),解:將圓柱的側(cè)面展開(kāi)成平面 圖形,連接AB, 因?yàn)?, BC= , 由勾股定理得AB2=AC2+BC2= , 所以螞蟻爬行的最短路線為 。,3、學(xué)習(xí)過(guò)程中你還有什么困惑?,感悟與收獲,1、通過(guò)這節(jié)課的學(xué)習(xí)活動(dòng)你有哪些
8、收獲?,2、通過(guò)本節(jié)課的學(xué)習(xí),你獲得了那些數(shù)學(xué)思想和方法?,分層作業(yè),必做題 : 1、課本第16頁(yè)復(fù)習(xí)題 3,4,5 B組1 2、獨(dú)立完成一份小結(jié),用自己的語(yǔ)言梳理本章的內(nèi)容。 選做題: 勾股定理不僅在數(shù)學(xué)的發(fā)展中起著重要作用,而且在現(xiàn)實(shí)世界中有著廣泛應(yīng)用,請(qǐng)同學(xué)們?cè)嚺e幾例,感受數(shù)學(xué)與生活的緊密相連。,結(jié)束寄語(yǔ),數(shù)學(xué)使人聰明,數(shù)學(xué)使人陶醉,數(shù)學(xué)的美陶冶著你、我、他.,祝您成功,、觀察下列表格:,請(qǐng)你結(jié)合該表格及相關(guān)知識(shí),求出b、c的值. 即b= ,c= .,3、勾股定理的創(chuàng)新問(wèn)題往往從教材出發(fā),充分考察同學(xué)們的認(rèn)知水平和探究能力。,跟蹤練習(xí),4、 有一塊田地的形狀和尺寸如圖所示,試求它的面積。,A,B,C,D,5,跟蹤練習(xí),5、在一棵樹(shù)的10米高處B有兩只猴
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋管理與服務(wù)質(zhì)量提升策略
- 港口碼頭輸送管道安裝施工方案
- 全球汽車零部件行業(yè)市場(chǎng)趨勢(shì)研究報(bào)告
- 肉豆蔻種植技術(shù)創(chuàng)新-洞察闡釋
- 新零售快閃店策略與營(yíng)銷復(fù)盤(pán)報(bào)告
- 倉(cāng)儲(chǔ)物流設(shè)備安裝及管理策略分析報(bào)告
- 陶瓷原料修復(fù)技術(shù)研究-洞察闡釋
- 蔬菜加工副產(chǎn)物的循環(huán)利用體系-洞察闡釋
- 嵌入式系統(tǒng)邊緣計(jì)算與資源管理-洞察闡釋
- 【我國(guó)碳金融交易市場(chǎng)風(fēng)險(xiǎn)度量與評(píng)估計(jì)算實(shí)證分析4900字】
- 2023年呂梁市文水縣社區(qū)工作者招聘考試真題
- 國(guó)開(kāi)2023秋《習(xí)近平總書(shū)記教育重要論述研究》形考任務(wù)一參考答案
- 2023年廣西公需科目關(guān)于人才工作的重要論述答案
- 設(shè)計(jì)報(bào)價(jià)單模板
- DB41T2513-2023核桃蛀果害蟲(chóng)防控技術(shù)規(guī)程
- 比例方程練習(xí)題
- 常用型鋼理論重量速查表
- 離婚登記申請(qǐng)受理回執(zhí)單
- 鍋爐標(biāo)書(shū)范本
- 第章 細(xì)菌藥敏試驗(yàn)及其耐藥表型檢測(cè)
- 員工筆記本電腦租用協(xié)議書(shū)律師版(4篇)
評(píng)論
0/150
提交評(píng)論