




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第七節(jié) 克拉默法則,一、非齊次與齊次線性方程組的概念 二、克拉默法則 三、重要定理 四、小結,設線性方程組,則稱此方程組為非,齊次線性方程組;,此時稱方程組為齊次線性方程組.,一、非齊次與齊次線性方程組的概念,二、克拉默法則,如果線性方程組,的系數(shù)行列式不等于零,即,其中 是把系數(shù)行列式 中第 列的元素用方程 組右端的常數(shù)項代替后所得到的 階行列式,即,那么線性方程組 有解,并且解是唯一的,解 可以表為,例1 用克拉默法則解方程組,解,三、重要定理,定理1 如果線性方程組 的系數(shù)行列式 則 一定有解,且解是唯一的 .,定理2 如果線性方程組 無解或有兩個不同的 解,則它的系數(shù)行列式必為零.,齊次線性方程組的相關定理,定理3 如果齊次線性方程組 的系數(shù)行列式 則齊次線性方程組 沒有非零解.,“沒有非零解”即“只有零解”,有非零解.,系數(shù)行列式,例2 問 取何值時,齊次方程組,有非零解?,例3.當k為何值,非齊次線性方程組,有唯一解。,1. 用克拉默法則解方程組的兩個條件,(1)方程個數(shù)等于未知量個數(shù);,(2)系數(shù)行列式不等于零.,2. 克拉默法則建立了線性方程組的解和已知的系 數(shù)與常數(shù)項之間的關系.它主要適用于理論推導.,四、小結,思考題,當線性方程組的系數(shù)行列式為零時,能否用克拉默 法則解方程組?為什么?此時方程組的解為何
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 證券資產(chǎn)投資管理辦法
- 福田外賣區(qū)域管理辦法
- 外地項目安全管理辦法
- 科技培訓機構管理辦法
- 育兒護理培訓課件
- 肩頸護理課件教學
- 肝硬化護理課件
- 肝癌的護理課件
- 如何有效培訓課件
- 高考一檢數(shù)學試卷
- 職業(yè)行為習慣課件
- 租賃住房培訓課件下載
- 高校智能化教學評價體系變革的技術創(chuàng)新路徑研究
- 房管員試題資料
- 商場吸煙區(qū)管理制度
- 高中復讀協(xié)議書
- 2024年甘肅省臨澤縣教育局公開招聘試題含答案分析
- 2025-2030中國戊烷發(fā)泡劑市場深度解析及前景運行動態(tài)研究報告
- 糖尿病足截肢術后護理
- 廣東省東莞市2022-2023學年高二下學期期末物理試題(含答案)
- 移植物抗宿主病分期及護理
評論
0/150
提交評論