2.2求解二元一次方程組(第2課時)演示文稿.ppt_第1頁
2.2求解二元一次方程組(第2課時)演示文稿.ppt_第2頁
2.2求解二元一次方程組(第2課時)演示文稿.ppt_第3頁
2.2求解二元一次方程組(第2課時)演示文稿.ppt_第4頁
2.2求解二元一次方程組(第2課時)演示文稿.ppt_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、第五章二元一次方程組,2 .二元一次方程組(第二課),如何求解下一個二元一次方程組,解:變形,得:代入,得:所以方程組的解為:得:變形為:可以直接代入,如何求解下一個二元一次方程組解:解:所以,方程組的解,這個方程組有什么特征可以解決? 上面的二元一次方程式怎么解? 根據(jù)方程式的基本性質(zhì),方程式的得:解:所以方程式的解可以是、=、相互倒數(shù),可以將兩個式子相加,解: -、得:解:所以方程式的解可以是、-、=、方程式、中未知數(shù)x的系數(shù)相等, 利用兩個方程式可以減去未知數(shù)x .用加減消元法可以求解以下方程式:過去求解這樣的方程式的基本想法是什么? 主要的步驟是什么? 思考,有未知數(shù)的系數(shù)的絕對值相同

2、,基本的想法是:主要的步驟是3360,加減消元,特征是:思考,例解以下的二元一次方程式,x,y的系數(shù)既不相同也不倒數(shù),有沒有使用加減消元法的方法? 分別代入解: 3、得:6x 9y=36. 2、得:6x 8y=34 .得: y=2.y=2,得: x=3.原方程組的解。 (2)加減消元法求解二元一次方程組的主要步驟是什么,(1)用加減消元法求解二元一次方程組的基本想法依然是消元,(2)用加減消元法求解二元一次方程組的一般步驟是,進行變形,使某未知數(shù)的系數(shù)絕對值相等合并同類項等).通常,將各方程式整理成包含未知數(shù)的項在方程式的左側(cè),常數(shù)項在方程式的右側(cè)的形式,按照上述加減消元的想法,用加減消元法解方程式:過手訓練,1 .教材隨堂練習,2 .補充練習:c、1 .教科書練習問題5.3 2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論