




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2.8 隨機解釋變量問題Random Explanatory Variables,2020/9/7,2,教學內(nèi)容,一、隨機解釋變量問題 二、實際經(jīng)濟問題中的隨機解釋變量問題 三、隨機解釋變量問題的后果 四、工具變量法 五、工具變量法在EViews的實現(xiàn) 六、應(yīng)用實例,2020/9/7,3,基本假設(shè):解釋變量X1,X2,Xk是確定性變量。 如果存在一個或多個隨機變量作為解釋變量,則稱原模型出現(xiàn)隨機解釋變量問題。 假設(shè)X2為隨機解釋變量。對于隨機解釋變量問題,分三種不同情況:,一、隨機解釋變量問題,對于模型,2020/9/7,4,1. 隨機解釋變量與隨機誤差項獨立(Independence),2.
2、 隨機解釋變量與隨機誤差項同期無關(guān)(contemporaneously uncorrelated),但異期相關(guān)。,3. 隨機解釋變量與隨機誤差項同期相關(guān)(contemporaneously correlated)。,2020/9/7,5,二、實際經(jīng)濟問題中的隨機解釋變量問題,實際經(jīng)濟問題中,經(jīng)濟變量都具有隨機性,但是在模型中都將解釋變量假定為外生的。所謂隨機解釋變量問題主要表現(xiàn)在滯后被解釋變量做解釋變量時。舉例說明: (1)隨機解釋變量與隨機誤差項不相關(guān) 耐用品存量模型 (2)隨機解釋變量與隨機誤差項高度相關(guān) 合理預期的消費函數(shù)模型,2020/9/7,6,例如:,(1)耐用品存量調(diào)整模型: 耐
3、用品的存量Qt由前一個時期的存量Qt-1和當期收入It共同決定: Qt=0+1It+2Qt-1+t t=1,T,這是一個滯后被解釋變量作為解釋變量的模型。 但是,如果模型不存在隨機誤差項的序列相關(guān)性,那么隨機解釋變量Qt-1只與t-1相關(guān),與t不相關(guān),屬于上述的第2種情況:隨機解釋變量與隨機誤差項不相關(guān),2020/9/7,7,(2)合理預期的消費函數(shù)模型,合理預期理論認為消費Ct是由對收入的預期Yte所決定的:,預期收入Yte與實際收入Y間存如下關(guān)系的假設(shè),容易推出,Ct-1是一隨機解釋變量,且與 (t-t-1)高度相關(guān)(Why?)。屬于上述第3種情況:隨機解釋變量與隨機誤差項高度相關(guān) 。,(
4、2) 合理預期的消費函數(shù)模型,Ct-1是一隨機解釋變量,且與 (t-t-1)高度相關(guān)(為什么?)。屬于上述第3種情況。,計量經(jīng)濟學模型一旦出現(xiàn)隨機解釋變量,且與隨機擾動項相關(guān)的話,如果仍采用OLS法估計模型參數(shù),不同性質(zhì)的隨機解釋變量會產(chǎn)生不同的后果。 下面以一元線性回歸模型為例進行說明。,三、隨機解釋變量的后果,1、隨機解釋變量與隨機誤差項相關(guān)圖,(a)正相關(guān),(b)負相關(guān),擬合的樣本回歸線可能低估截距項,而高估斜率項。,擬合的樣本回歸線高估截距項,而低估斜率項。,2、如果X與相互獨立,OLS參數(shù)估計量仍然是無偏、一致估計量。,3、如果X與同期不相關(guān),異期相關(guān),得到的參數(shù)估計量有偏、但卻是一
5、致的。,kt的分母中包含不同期的X, kt與t相關(guān),4、如果X與同期相關(guān),得到的參數(shù)估計量有偏、且非一致。,前面已經(jīng)證明,2020/9/7,14,三、隨機解釋變量問題的后果,1、隨機解釋變量與隨機誤差項不相關(guān),參數(shù)估計量仍然無偏估計量; 2、隨機解釋變量與隨機誤差項在小樣本下相關(guān),在大樣本下漸進無關(guān),參數(shù)估計量在小樣本下是有偏的,在大樣本下具有漸進無偏性; 3、隨機解釋變量與隨機誤差項高度相關(guān)而且它們依概率1都不存在不相關(guān)。 參數(shù)估計量在小樣本下是有偏的,在大樣本下不具有漸進無偏性。而且: (1)隨機誤差項必然具有自相關(guān) (2)DW檢驗失效,無論DW數(shù)值多大或多小均存在自相關(guān),2020/9/7
6、,15,四、工具變量法,1、工具變量 2、IV工具變量法 3、工具變量法估計量的特性 4、工具變量法的局限 5、EViews中實現(xiàn)工具變量法 6、運用工具變量法的實例,2020/9/7,16,1、工具變量Instrumental variables,功能:在OLS估計中被當成工具,用以替代與隨機誤差項相關(guān)的隨機解釋變量。 工具變量Z滿足的條件: (1) Z與替代的隨機解釋變量Xj高度相關(guān) E(Xj,Z)0 (2) Z與隨機誤差項uj無關(guān) E(uj,Z)=0 (3) Z與模型中的其他解釋變量Xi不相關(guān) E(Xi,Z)=0 i j,2020/9/7,17,2、IV工具變量法,采用工具變量Z =正規(guī)
7、方程: =,IV法只是在估計過程中用IV替代了與隨機誤差項相關(guān)的變量,并不是改變了原模型 Y=XB+N,2020/9/7,18,X2是隨機解釋變量, Z是X2的工具變量, 其余解釋變量用自身作自己的工具變量. Z是一個很好的IV.,這種求模型參數(shù)估計量的方法稱為工具變量法(instrumental variable method),相應(yīng)的估計量稱為工具變量法估計量(instrumental variable (IV) estimator)。,工具變量矩陣,工具變量的應(yīng)用,多元線性模型的正規(guī)方程組,X2為與相關(guān)的隨機變量,2020/9/7,21,3、工具變量法估計量的特性,(1)工具變量估計法得
8、到的估計量是無偏估計量 (2)工具變量估計法得到的估計量,工具變量法估計量是一致估計量,一元回歸中,工具變量法估計量為,2020/9/7,23,幾點注解,工具變量并沒有替代模型中的解釋變量,只是在估計過程中作為“工具”被使用。 如果模型中有兩個以上的隨機解釋變量與隨機誤差項相關(guān),就必須找到兩個以上的工具變量。但是,一旦工具變量選定,它們在估計過程被使用的次序不影響估計結(jié)果。為什么? OLS可以看作工具變量法的一種特殊情況。為什么?,2020/9/7,24,4、工具變量法的局限,(1)Z難選,通常從前定變量(包括外生變量)中選擇或者用該變量的估計值作為工具變量,例如 =X2 (2)Z不唯一 (3
9、)最小方差性不滿足,能否說“用工具變量代替了模型中的隨機解釋變量”? 能否說“其它解釋變量用自己作為工具變量”? 能否說“用Z作為X1的工具變量,用X1作為X2的工具變量”?,Z作為X2的工具變量,在小樣本下,工具變量法估計量仍是有偏的。,(4)幾個重要的概念,工具變量并沒有替代模型中的解釋變量,只是在估計過程中作為“工具”被使用。,(3)如果模型中有兩個以上的隨機解釋變量與隨機誤差項相關(guān),就必須找到兩個以上的工具變量。但是,一旦工具變量選定,它們在估計過程被使用的次序不影響估計結(jié)果(Why?)。,OLS可以看作工具變量法的一種特殊情況。,如果1個隨機解釋變量可以找到多個互相獨立的工具變量,人
10、們希望充分利用這些工具變量的信息,就形成了廣義矩方法(Generalized Method of Moments, GMM)。 在GMM中,矩條件大于待估參數(shù)的數(shù)量,于是如何求解成為它的核心問題。 工具變量法是GMM的一個特例。,要找到與隨機擾動項不相關(guān)而又與隨機解釋變量相關(guān)的工具變量并不是一件很容易的事 可以用Xt-1作為原解釋變量Xt的工具變量。,2020/9/7,28,5、EViews中實現(xiàn)工具變量法,工具變量法包含在TSLS中。設(shè)定模型后,選擇TSLS方法,打開一個要求給出工具變量列表的對話框,填入適當?shù)腎V。,在例2.5.1的中國居民人均消費函數(shù)的估計中,采用OLS估計了下面的模型:
11、,由于:居民人均消費支出(CONSP)與人均國內(nèi)生產(chǎn)總值(GDPP)相互影響,因此,容易判斷GDPP與同期相關(guān)(往往是正相關(guān)),OLS估計量有偏并且是非一致的(低估截距項而高估計斜率項 )。,案例:中國居民人均消費函數(shù),OLS估計結(jié)果:,(13.51) (53.47) R2=0.9927 F=2859.23 DW=0.5503 SSR=23240.7,如果用GDPPt-1為工具變量,可得如下工具變量法估計結(jié)果:,(14.84) (56.04) R2 =0.9937 F=3140.58 DW=0.6691 SSR=18366.5,居民總消費模型,以居民消費總額JMXF為被解釋變量; 以GDP和J
12、MXF(-1)為解釋變量; 進行OLS估計。 JMXF(-1)為隨機解釋變量,且與隨機誤差項相關(guān); 以政府消費ZFXF作為工具變量,進行IV估計; 以政府消費ZFXF和資本形成ZBXC作為工具變量,進行GMM估計。,數(shù)據(jù),OLS估計,IV估計,GMM估計,OLS估計結(jié)果:,(13.51) (53.47) R2=0.9927 F=2859.23 DW=0.5503 SSR=23240.7,如果用GDPPt-1為工具變量,可得如下工具變量法估計結(jié)果:,(14.84) (56.04) R2 =0.9937 F=3140.58 DW=0.6691 SSR=18366.5,2020/9/7,40,如果1個隨機解釋變量可以找到多個互相獨立的工具變量,人們希望充分利用這些工具變量的信息,就形成了廣義
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 材料加工工藝優(yōu)化經(jīng)濟開發(fā)合同
- 老妖精造價工程師課件
- 大學近代史考試試題及答案
- 美術(shù)說課課件風箏
- 2025年企業(yè)安全事故案例分析
- 美術(shù)兒童教學課件模板
- 安全評價相關(guān)法規(guī)
- 機械工程師資格認證考試
- 物流公司司機培訓課件
- 安全檢查活動總結(jié)
- 普通高中物理課程標準
- 國家開放大學《監(jiān)督學》形考任務(wù)( 1-4)試題和答案解析
- 婚前協(xié)議書(完整版)-婚前協(xié)議書模板
- 完工付款最終付款申請表
- 人工動靜脈內(nèi)瘺
- 新版(七步法案例)PFMEA
- 2022年重慶優(yōu)秀中考作文經(jīng)典范例合集-2022中考作文
- 慢阻肺隨訪記錄表正式版
- 廣西大學數(shù)學建模競賽選拔賽題目
- 受戒申請表(共3頁)
- 低鈉血癥的護理
評論
0/150
提交評論