![自動(dòng)控制理論-I-ch7_第1頁(yè)](http://file1.renrendoc.com/fileroot_temp2/2020-9/6/781fee07-8ae8-421a-a7af-e613e90bb42c/781fee07-8ae8-421a-a7af-e613e90bb42c1.gif)
![自動(dòng)控制理論-I-ch7_第2頁(yè)](http://file1.renrendoc.com/fileroot_temp2/2020-9/6/781fee07-8ae8-421a-a7af-e613e90bb42c/781fee07-8ae8-421a-a7af-e613e90bb42c2.gif)
![自動(dòng)控制理論-I-ch7_第3頁(yè)](http://file1.renrendoc.com/fileroot_temp2/2020-9/6/781fee07-8ae8-421a-a7af-e613e90bb42c/781fee07-8ae8-421a-a7af-e613e90bb42c3.gif)
![自動(dòng)控制理論-I-ch7_第4頁(yè)](http://file1.renrendoc.com/fileroot_temp2/2020-9/6/781fee07-8ae8-421a-a7af-e613e90bb42c/781fee07-8ae8-421a-a7af-e613e90bb42c4.gif)
![自動(dòng)控制理論-I-ch7_第5頁(yè)](http://file1.renrendoc.com/fileroot_temp2/2020-9/6/781fee07-8ae8-421a-a7af-e613e90bb42c/781fee07-8ae8-421a-a7af-e613e90bb42c5.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、1,Chapter 7 Stability in the Frequency Domain,7.1 Introduction 7.2 Mapping Contours in the s-plane 7.3 Nyquist Stability Criterion 7.4 Stability Margin of System 7.5 Dynamics performance of closed-loop from open-loop frequency characteristic 7.6 Summary,2,7.1 Introduction,Developed by H.Nyquist in 1
2、932. Based on Cauchys theorem.,3,The frequency response can be obtained experimentally. It can be utilized to investigate the relative stability.,4,Where L(s) is a rational function of s. To ensure stability, it must be ascertained that all zeros of F(s) lie in the left-hand s-plane. Propose a mappi
3、ng of the right-hand s-plane in F(s)-plane.,5,7.2 Mapping Contours in the s-plane,A contour map is a contour in one plane mapped into another plane by a relation F(s). Example:,6,Cauchys theorem: If a contour s in the s-plane encircles Z zeros and P poles of F(s) and does not pass through any poles
4、and zeros of F(s) and the traversal is in the clockwise direction along the contour, the corresponding contour F in the F(s)-plane encircles the origin of the F(s)-plane N=Z-P times in the clockwise direction.,7,Another example:,8,The poles of F(s) are the poles of L(s). The zeros of F(s) are the ch
5、aracteristic roots of the system.,7.3 Nyquist Stability Criterion,9,For a system to be stable, all the zeros of F(s) must lie in the left-hand s-plane. Choose a contour s in the s-plane that encloses the entire right-hand s-plane, the number of encirclements of the origin of the F(s)-plane is N=Z-P.
6、 Z: zeros in RHP P: poles in RHP So the number of unstable poles of the system is Z=N+P,10,The contour F is known as the Nyquist diagram or ploar plot of F(s). As L(s)=F(s)-1, the number of encirclements of the origin in F(s)-plane becomes the number of encirclements of -1 point in L(s)-plane. L(s)
7、is the open-loop transfer function.,11,Nyquist stability criterion 1. A feedback system is stable if and only if the contour L in the L(s)-plane does not encircle the (-1, 0) point when the number of poles of L(s) in the right-hand s-plane is zero (P=0). 2. A feedback system is stable if and only if
8、, for the contour L, the number of counter-clockwise encirclements of the (-1, 0) point is equal to the number of poles of L(s) with positive real parts.,12,Example 7.1,N=Z=0, so the system is stable.,13,Example 7.2 Assuming open loop transfer function is,determine the stability of the system at K=2
9、0 and K=100.,14,We need to find the cross-over point and compare it with -1!,15,So the system is stable at K=20 and unstable at K=100.,16,1,20,0.3,K=20,17,K=20,18,100,K=100,19,1,1.48,K=100,20,K=100,21,Example 7.3,22,(a) The origin of the s-plane,23,is the polar plot of L(s).,is mapped into the origi
10、n of the L(s)-plane.,is symmetrical to the polar plot.,24,Note: 1.,25,2.,26,3. The conclusion can be expanded to the system including delay unit. 4. If the contour L(jw) overpass the (-1, j0) point, that is one close-loop pole on the jw-axis, the system is critically stable.,27,5. System with v pole
11、s at the origin The supplement curve must be draw. The small semicircular detour around the pole at the origin can be represented by setting,28,6. If the number of counter-clockwise encirclements is NP, then the closed-loop system is unstable with Z unstable poles, where Z=P-N.,29,正負(fù)穿越,正穿越:相角增加,逆時(shí)針
12、負(fù)穿越:相角減少,順時(shí)針 極坐標(biāo)圖穿越點(diǎn)(-1,0)左邊實(shí)軸的正負(fù)穿越次數(shù)之差等于極坐標(biāo)圖逆時(shí)針?lè)较虬鼑c(diǎn)(-1,0)的周數(shù)。 Nyquist判據(jù): Nyquist圖穿越點(diǎn)(-1,0)左邊實(shí)軸的正負(fù)穿越次數(shù)之差應(yīng)等于P。 P:開(kāi)環(huán)傳遞函數(shù)正實(shí)部極點(diǎn)數(shù)。,30,Example 7.4,It is possible to encircle the -1 point.,31,At real axis,So the system is stable when,32,Example 7.5,33,So the system is stable when Tt.,34,Example 7.6 non-mi
13、nimum phase system,35,Conclusion: Nyquist diagram encircles the 1 point one time in the direction of counter-clockwise. N=1,P=1,Z=P-N=0, so the system is stable. The system is stable when K3.,36,Example 7.7:The open-loop TF is Determine the changing range of K.,The 1 point located on A or C, the sys
14、tem is stable. The 1 point located on B or D, the system is unstable.,37,We can get: 1 locus on A, K13200, unstable So the changing range of K is 0 K19.2 and 334K13200.,38,7.4 Stability Margin of System,The closeness of the L(jw) curve to “-1” is a measure of the relative stability of the system. Th
15、ere are two measures of relative stability - Gain Margin and Phase Margin.,39,Phase Margin (PM): Definition:the phase angle through which the L(jw) locus must be rotated so that the unity magnitude |L(jw)|=1 point will pass through the (-1, 0) point in the L(jw)-plane. wc : the gain crossover freque
16、ncy PM0(PM0) indicates a stable (an unstable) system.,40,Gain Margin(GM): Kg Definition:the reciprocal of the gain |L(jw)| at the frequency at which the phase angle reaches -180. wg: the phase crossover frequency,41,GM1(0 dB) indicates a stable closed-loop system and the system will remain stable if
17、 the loop gain increase is less than GM. GM1(0 dB) indicates an unstable closed-loop system and a reduction of loop gain at least GM is required for the system to become stable.,42,0,phase margin,Gain margin,Kg,43,Gain and Phase Margins on Bode plots.,44,7.5 Dynamics performance of closed-loop from
18、open-loop frequency characteristic,1. System type and steady state error,45,System type Slope of the low frequency asymptote type 0 0. type 1 -20dB/dec. type 2 -40dB/dec.,46,2. The specification of closed loop system in frequency domain,The second-order control system,47,48,The peak value of magnitude of control system,49,Bandwidth of control system,50,3. The specification of op
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度腳手架施工安全教育與培訓(xùn)服務(wù)合同
- 2025年度交換機(jī)產(chǎn)品市場(chǎng)推廣與品牌建設(shè)合同
- 2025年度物流園區(qū)運(yùn)營(yíng)管理合同樣本下載
- 重慶2025年重慶市涪陵區(qū)教育事業(yè)單位面向應(yīng)屆公費(fèi)師范生招聘75人筆試歷年參考題庫(kù)附帶答案詳解
- 部分學(xué)校上學(xué)期期中考試八年級(jí)語(yǔ)文試卷(PDF版無(wú)答案)
- 漯河2024年河南漯河市審計(jì)局事業(yè)單位引進(jìn)高層次人才2人筆試歷年參考題庫(kù)附帶答案詳解
- 漯河2024年河南漯河市中醫(yī)院招聘高層次人才5人筆試歷年參考題庫(kù)附帶答案詳解
- 浙江2025年浙江省數(shù)據(jù)局下屬事業(yè)單位招聘3人筆試歷年參考題庫(kù)附帶答案詳解
- 泰州江蘇泰州靖江市機(jī)關(guān)企事業(yè)單位勞務(wù)派遣管理服務(wù)中心招聘筆試歷年參考題庫(kù)附帶答案詳解
- 河南2024年河南信陽(yáng)師范大學(xué)招聘碩士研究生42人筆試歷年參考題庫(kù)附帶答案詳解
- 人教版(2025新版)七年級(jí)下冊(cè)數(shù)學(xué)第七章 相交線與平行線 單元測(cè)試卷(含答案)
- 春節(jié)節(jié)后復(fù)工全員安全意識(shí)提升及安全知識(shí)培訓(xùn)
- 道路運(yùn)輸企業(yè)主要負(fù)責(zé)人和安全生產(chǎn)管理人員安全考核試題庫(kù)(含參考答案)
- 淺析齒輪故障振動(dòng)診斷技術(shù)
- 曼昆《經(jīng)濟(jì)學(xué)原理》(宏觀經(jīng)濟(jì)學(xué)分冊(cè))英文原版課件 23
- 《中國(guó)特色社會(huì)主義法治理論》復(fù)習(xí)題集及解析共20篇
- 員工考勤簽卡單
- 數(shù)據(jù)結(jié)構(gòu)英文教學(xué)課件:Chapter 5 Recursion
- 青島版五四制五下數(shù)學(xué)課程綱要
- 稻盛和夫的哲學(xué)與阿米巴
- 冷庫(kù)驗(yàn)證方案
評(píng)論
0/150
提交評(píng)論