《二次函數(shù)》教學(xué)設(shè)計(jì)_第1頁(yè)
《二次函數(shù)》教學(xué)設(shè)計(jì)_第2頁(yè)
《二次函數(shù)》教學(xué)設(shè)計(jì)_第3頁(yè)
《二次函數(shù)》教學(xué)設(shè)計(jì)_第4頁(yè)
《二次函數(shù)》教學(xué)設(shè)計(jì)_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、1.1 二次函數(shù)教學(xué)設(shè)計(jì)教學(xué)目標(biāo)知識(shí)與技能目標(biāo):理解二次函數(shù)的概念,掌握二次函數(shù)的形式;會(huì)建立簡(jiǎn)單的二次函數(shù)的模型,并能根據(jù)實(shí)際問(wèn)題確定自變量的取值范圍;會(huì)用待定系數(shù)法求二次函數(shù)的解析式程序性目標(biāo):讓學(xué)生從實(shí)際問(wèn)題情境中經(jīng)歷探索、分析和建立兩個(gè)變量之間的二次函數(shù)關(guān)系模型的過(guò)程;使學(xué)生進(jìn)一步體驗(yàn)如何用數(shù)學(xué)的方法去描述變量之間的數(shù)量關(guān)系,發(fā)展概括及分析問(wèn)題、解次問(wèn)題的能力情感與價(jià)值觀目標(biāo):通過(guò)具體實(shí)例,讓學(xué)生經(jīng)歷概念的形成過(guò)程,使學(xué)生體會(huì)到函數(shù)能夠反映實(shí)際事物的變化規(guī)律,體驗(yàn)數(shù)學(xué)來(lái)源于生活,服務(wù)于生活的辯證觀點(diǎn)教學(xué)重點(diǎn)理解二次函數(shù)yax2bxc(a、b、c)是常數(shù),且a0)的概念教學(xué)難點(diǎn)本課時(shí)中的

2、“合作學(xué)習(xí)”涉及的實(shí)際問(wèn)題有的較為復(fù)雜,要求學(xué)生有較強(qiáng)的抽象概括能力教學(xué)媒體準(zhǔn)備多媒體教學(xué)設(shè)計(jì)過(guò)程(教學(xué)程序設(shè)計(jì);教法設(shè)計(jì);學(xué)法設(shè)計(jì);教材的處理與媒體)疑點(diǎn):對(duì)實(shí)際問(wèn)題中變量和變量之間的相互依賴關(guān)系的確定教學(xué)思路:這節(jié)課主要通過(guò)數(shù)學(xué)建模的過(guò)程來(lái)實(shí)現(xiàn),思路如圖所示:一、認(rèn)知原件喚起與情境導(dǎo)入,我們知道,在一次函數(shù)的學(xué)習(xí)中,學(xué)生已嘗試從表格中獲取信息,從事觀察、歸納、計(jì)算進(jìn)行推理活動(dòng)教學(xué)中可以請(qǐng)同學(xué)們談?wù)勛约涸趯W(xué)習(xí)一次函數(shù)中的體驗(yàn),如通過(guò)具體實(shí)例,逐步經(jīng)歷實(shí)際問(wèn)題數(shù)學(xué)化的過(guò)程,感受兩個(gè)變量之間的相依關(guān)系,加深對(duì)函數(shù)思想及表示方法的理解,鼓勵(lì)學(xué)生用自己的語(yǔ)言描述,誘發(fā)其進(jìn)行積極思維,找到學(xué)生的最近發(fā)

3、展區(qū)(合作學(xué)習(xí):請(qǐng)用適當(dāng)?shù)暮瘮?shù)解析式表示下列問(wèn)題情境中的兩個(gè)變量 y 與 x之間的關(guān)系)(1)圓的面積 y (cm)與圓的半徑x (cm )(2)王先生存人銀行2萬(wàn)元,先存一個(gè)一年定期,一年后銀行將本息自動(dòng)轉(zhuǎn)存為又一年定期,設(shè)一年定期的年存款利率為文 x 兩年后王先生共得本息y元;(3)擬建中的一個(gè)溫室的平面圖如圖,如果溫室外圍是一個(gè)矩形,周長(zhǎng)為120m , 室內(nèi)通道的尺寸如圖,設(shè)一條邊長(zhǎng)為 x (cm),種植面積為 y (m2)該情景問(wèn)題的設(shè)計(jì),可以設(shè)想到問(wèn)題的背景涉及的較為復(fù)雜,教學(xué)中應(yīng)有效的借助多媒體的應(yīng)用,從而增強(qiáng)問(wèn)題出示的直觀性、生動(dòng)性;在教法設(shè)計(jì)上引導(dǎo)學(xué)生自主、合作,通過(guò)三個(gè)函數(shù)關(guān)

4、系式的建立,感受歸納、類比的數(shù)學(xué)建模的過(guò)程,嘗試并體驗(yàn)對(duì)問(wèn)題的探究(上述三個(gè)問(wèn)題中的函數(shù)解析式具有哪些共同的特征?經(jīng)化簡(jiǎn)后都具y=ax2+bx+c 的形式. (a,b,c是常數(shù),)我們把形如y=ax2+bx+c(其中a,b,C是常數(shù),a0)的函數(shù)叫做二次函數(shù)(quadratic funcion) ,稱:a為二次項(xiàng)系數(shù),b為一次項(xiàng)系數(shù),c為常數(shù)項(xiàng),)再以(3)、(1)所得的解析式為切口,提出、點(diǎn)明二次函數(shù)解析式中二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng)的概念在教學(xué)脈絡(luò)上更具:連貫性、簡(jiǎn)潔性(例如,1、二次函數(shù) y=-x2+58x-112 的二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)為58,常數(shù)項(xiàng)1122、二次涵數(shù)y=x2

5、的二次項(xiàng)系數(shù),一次項(xiàng)系數(shù)0,常數(shù)項(xiàng)0) 二、教學(xué)中教師引導(dǎo)學(xué)生去“做一做”、“練一練”,使學(xué)生經(jīng)歷概念的生成、構(gòu)建,以及知識(shí)的發(fā)生、發(fā)展的過(guò)程同時(shí),教師應(yīng)該引導(dǎo)學(xué)生采用:自主學(xué)習(xí)、合作探究的學(xué)習(xí)方式(做一做:1.下列函數(shù)中,哪些是二次函數(shù)?y=x2;y=-;y=2x2-x-1;y=x(1-x);y=(x-1)2-(x+1)(x-1);課內(nèi)練習(xí):2.分別說(shuō)出下列二次函數(shù)的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)?y=x2+1 y=-3x2+7x-12 y=2x(1-x)我們把形如y=ax2+bx+c(其中a,b,C是常數(shù),a0)的函數(shù)叫做二次函數(shù)(quadratic funcion) 注意:當(dāng)二次函數(shù)表示

6、某個(gè)實(shí)際問(wèn)題時(shí),還必須根據(jù)題意確定自變量的取值范圍. 想一想:函數(shù)的自變量x是否可以取任何值呢? )課堂教學(xué)必須在師生、生生的互動(dòng)氛圍中,引導(dǎo)學(xué)生從感性認(rèn)識(shí)到理性認(rèn)知的過(guò)渡,培養(yǎng)、形成抽象思維的意識(shí)和能力,從而激發(fā)學(xué)生認(rèn)識(shí)活動(dòng)中反思、再認(rèn)識(shí)的科學(xué)態(tài)度教師在教學(xué)中借助:整體感知:類比一次函數(shù)的教學(xué)方法,引導(dǎo)學(xué)生認(rèn)識(shí)二次函數(shù)四邊互動(dòng):還應(yīng)使學(xué)生注意到,運(yùn)用函數(shù)解決實(shí)際問(wèn)題時(shí),不能忽視對(duì)自變量取值范圍的討論(例1 如圖, 一張正方形紙板的邊長(zhǎng)為2cm,將它剪去4個(gè)全等的直角三角形 (圖中陰影部分 ) 設(shè)AE=BF=CG=DH=x(cm),四邊形 EFGH的面積為y(cm2),求: y關(guān)于 x的函數(shù)解

7、析式和自變量x的取值池圍 ;當(dāng)x分別為0.25,0.5,1,1.5,1.75時(shí) ,對(duì)應(yīng)的四邊形 EFGH的 面積,并列表表示試一試:3.用20米的籬笆圍一個(gè)矩形的花圃(如圖),設(shè)連墻的一邊為x,矩形的面積為y,求:(1)寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式.(2)當(dāng)x=3時(shí),矩形的面積為多少?)教師在教學(xué)中應(yīng)明確:對(duì)函數(shù)概念的學(xué)習(xí)逐層遞進(jìn),應(yīng)特別關(guān)注學(xué)生是否發(fā)現(xiàn)變化量之間的互相依賴過(guò)程,是否理解表格、關(guān)系式表示的變化規(guī)律,以及能否從中獲取和分析信息,并由此進(jìn)行預(yù)測(cè)和推理三、教學(xué)中應(yīng)很好的發(fā)揮多媒體的作用,增強(qiáng)問(wèn)題出示的直觀性、生動(dòng)性,激發(fā)學(xué)生數(shù)學(xué)問(wèn)題解決的動(dòng)機(jī)和興趣,使學(xué)生在心理輕松、和諧的氛圍中完成對(duì)問(wèn)

8、題的探究和知識(shí)的構(gòu)建,同時(shí)也培養(yǎng)了學(xué)生的科學(xué)思維的能力和品質(zhì)引導(dǎo)學(xué)生在師生、生生的多維互動(dòng)中完成(例題的“講解”、練習(xí)的“訓(xùn)練”),既培養(yǎng)了技能又發(fā)展了能力(例2 已知二次函數(shù)y=x+bx+c,當(dāng)x=1時(shí),函數(shù)值為4,當(dāng)x=2時(shí),函數(shù)值為- 5,用待定系數(shù)法求這個(gè)二次函數(shù)的解析試?課內(nèi)練習(xí):4.已知二次函數(shù)y=ax+bx+3, 當(dāng)x=2時(shí),函數(shù)值為3, 當(dāng)x= - 2時(shí), 函數(shù)值為2, 求這個(gè)二次函數(shù)的解析試.這節(jié)課你有什么收獲和體會(huì)?我們必須要知道,使學(xué)生會(huì)用待定系數(shù)法求二次函數(shù)解析式是該課時(shí)的技能教學(xué)目標(biāo)之一,教學(xué)中必須使學(xué)生領(lǐng)會(huì)數(shù)學(xué)作為一門工具學(xué)科,待定系數(shù)法是我們?nèi)ミM(jìn)一步體驗(yàn)用數(shù)學(xué)的方

9、法去描述變量之間的數(shù)量關(guān)系,從而發(fā)展概括、分析解次問(wèn)題的抽象思維能力的基本運(yùn)算技能之一四、歸納小結(jié)、反思、拓展:引導(dǎo)學(xué)生進(jìn)行知識(shí)歸納、總結(jié):在學(xué)習(xí)了一次函數(shù)、反比例函數(shù)基礎(chǔ)上,學(xué)習(xí)二次函數(shù)有助于進(jìn)一步領(lǐng)會(huì)函數(shù)的思想,同時(shí)學(xué)習(xí)完這三種具體函數(shù)后,有助于理解函數(shù)這一抽象概念(想一想:函數(shù)y=ax2+bx+c(其中a,b,c是常數(shù)),當(dāng)a,b,c滿足什么條件時(shí):它是二次函數(shù)?它是一次函數(shù)?它是正比例函數(shù)?)點(diǎn)明,確定自變量的取值范圍一般要從兩個(gè)方面考慮:自變量的取值范圍必須使其所在的代數(shù)式有意義;如果是實(shí)際問(wèn)題,那么自變量的取值必須使實(shí)際問(wèn)題有意義知識(shí)拓展:心理學(xué)家研究發(fā)現(xiàn):一般情況下,學(xué)生的注意力隨著教師講課時(shí)間的變化而變化,講課開(kāi)始時(shí),學(xué)生的注意力y隨時(shí)間t的變化規(guī)律有如下關(guān)系式:(1)講課開(kāi)始后第5分鐘時(shí)與講課開(kāi)始后第25分鐘時(shí)比較,何時(shí)學(xué)生的注意力更集中?(2)講課開(kāi)始后多少分鐘,學(xué)生的注意力最集中?能持續(xù)多少分鐘?(3)一道數(shù)學(xué)難題,需要講解24分鐘,為了效果較好,要求學(xué)生的注意

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論