




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、1,Ch.5 Signal-Space Analysis,5.1Introduction 5.2Geometric Representation of Signals 5.3Conversion of the Continuous AWGN Channel into a Vector Channel 5.4Likelihood Functions 5.5Coherent Detection of Signals in Noise: Maximum Likelihood Decoding 5.6Correlation Receiver 5.7Probability of Error 5.8Sum
2、mary and Discussion,2,5.1 Introduction,Fig. 5.1 Block diagram of a generic digital communication system.,Minimizing pe Optimum receiver in the minimum probability of error sense,3,5.2 Geometric Representationof Signals,Geometric representation To represent any set of M energy signals as linear combi
3、nations of N orthonormal basis functions, where N M. Gram-Schmidt orthogonalization procedure How to choose the N orthonormal basis functions for M energy signals,4,Basic Representations,Orthonormal,5,Illustration of Concepts,Figure 5.4 Illustrating the geometric representation of signals for the ca
4、se when N 2 and M 3.,6,Orthonormal Basis Functions,Fig. 5.3 Geometric representation of signals.,7,Orthonormal Basis Functions (Contd),The signal vector si si(t) is completely determined by si , length (or “absolute value”, “norm”) of si,8,Orthonormal Basis Functions (Contd),Euclidean distance betwe
5、en si and sk,9,Example: Schwarz Inequality,For real-valued signals:,For complex-valued signals:,For either case, the equality holds if and only if s2(t) = cs1(t), where c is any constant.,10,Example: Schwarz Inequality (Contd),11,Gram-Schmidt Orthogonalization Procedure,12,Example: 2B1Q Code,Fig. 5.
6、5 Signal-space representation of the 2B1Q code.,M = 4 and N = 1,13,5.3 Conversion of the Continuous AWGN Channel into a Vector Channel,In this section, we show that: In an AWGN channel, only the projections of the noise onto the basis functions of the signal set affect the sufficient statistics of t
7、he signal detection; the remainder of the noise is irrelevant.,14,Signal Analysis with AWGN Channel,Fig. 5.2 The AWGN Channel.,Noise element affecting signal detection,Irrelevant noise element,15,Statistical Characterization,X(t), W(t) : Random Processes x(t), w(t) : Sample Functions Xj, Wj : Random
8、 Variables xj, wj : Sample Values,Since Xj are Gaussian random variables, they are statistically independent.,16,Statistical Characterization (Contd),Observation vector,Memoryless channel,17,Theorem of Irrelevance,Insofar as signal detection in AWGN is concerned, only the projections of the noise on
9、to the basis functions of the signal set affects the sufficient statistics of the detection problem; the remainder of the noise is irrelevant.,18,5.4 Likelihood Functions,Likelihood function:,Log-likelihood function:,AWGN channel:,Given the observation vector x, which message symbol mi is transmitte
10、d,?,19,5.5 Coherent Detection of Signals in Noise: Maximum Likelihood Decoding,The signal constellation The signal detection problem The optimal decision rules,20,The Signal Constellation,Set of N orthonormal basis functions,A Euclidean space of dimension N,The set of message points in this space co
11、rresponding to the set of transmitted signals is called a signal constellation.,The observation vector x is represented by a received signal vector in the same Euclidean space.,21,The Signal Constellation (Contd),Fig. 5.7 Illustrating the effect of noise perturbation, depicted in (a), on the locatio
12、n of the received signal point, depicted in (b).,22,Given the observation vector x, perform a mapping from x to an estimate of the transmitted symbol, mi, in a way that would minimize the probability of error in the decision-making process.,The Signal Detection Problem,Probability of error when make
13、 the decision:,23,The Optimum Decision Rules,The maximum a posteriori probability (MAP) rule:,The maximum likelihood rule:,24,The Optimum Decision Rules (Contd),Graphical interpretation of the maximum likelihood decision rule Dividing the observation space Z into M-decision regions Z1, Z2, , ZM The
14、rule is: Observation vector x lies in region Zi if l(mk) is maximum for k = i,25,The Optimum Decision Rules (Contd),With AWGN channel:,Maximizing:,Equals minimizing:,Equals maximizing:,Fig. 5.8 An illustration of the decision rule with AGWN channel.,26,5.6 Correlation Receiver,Fig. 5.9 The optimal r
15、eceiver using correlators.,Detector/Demodulator,Signal transmission decoder,27,Correlation Receiver (Contd),Therefore, the correlator equals sampling at time T after a matched filter.,28,Correlation Receiver (Contd),Fig. 5.10 The optimal receiver using matched filters.,Detector/Demodulator,Signal tr
16、ansmission decoder,29,5.7 Probability of Error,Average probability of symbol error Invariance of the probability of error to rotation and translation Minimum energy signals Union bound on the probability of error Bit versus symbol error probabilities,30,Average Probability of Symbol Error,31,Invaria
17、nce of the Probability of Error to Rotation and Translation,Rotation:,Translation:,Distance invariance:,Error probability invariance,Maximum likelihood detection AWGN channel,32,Rotational Invariance,Figure 5.11 A pair of signal constellations for illustrating the principle of rotational invariance.
18、,33,Minimum Energy Signals,Energy of a signal constellation:,Translating the signal constellation by a vector amount a:,where,34,Minimum Energy Signals (Contd),Figure 5.12 A pair of signal constellations for illustrating the principle of translational invariance.,35,Union Bound on the Probability of
19、 Error,For AWGN channel, the symbol error probability is:,where,The above formulations are impractical to calculate,Using bounds,Union bound: one of the bounds, made by simplifying the region of integration in the top formulation,36,Union Bound (Contd),Fig. 5.13 Illustrating the union bound. (a) Constellation of four message points. (b) Three constellations with a common message point and one other message point retained from the original constellation.,The probability of x is closer t
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030中國男士牛仔上衣行業(yè)深度研究及發(fā)展前景投資評估分析
- 2025至2030中國生命素內(nèi)衣行業(yè)市場市場占有率及投資前景評估規(guī)劃報告
- 美術(shù)培訓沙發(fā)課件
- 教育前沿技術(shù)與人才培養(yǎng)研究
- 技術(shù)趨勢與商業(yè)競爭-對現(xiàn)有工具的分析
- 健康醫(yī)療領(lǐng)域中的品牌形象建設(shè)研究
- 醫(yī)療行業(yè)線上教育活動策劃全解析
- 企業(yè)培訓的未來-虛擬現(xiàn)實技術(shù)的前景與挑戰(zhàn)
- 教育行業(yè)中的精準決策支持系統(tǒng)研究
- 醫(yī)學教育與專業(yè)發(fā)展的動機驅(qū)動與效果衡量
- 回購股權(quán)投資協(xié)議書
- 神經(jīng)網(wǎng)絡(luò)技術(shù)在船舶輻射噪聲預報中的應用與研究
- 中職生:高職單招數(shù)學各章節(jié)專項練習試卷及答案
- 2025年中國心梗鑒定儀市場運行態(tài)勢及行業(yè)發(fā)展前景預測報告
- 蘇州2025年江蘇蘇州市教育局直屬學校招聘教師57人筆試歷年典型考點(頻考版試卷)附帶答案詳解版
- 第二單元 主題活動一《我是聰明的消費者》(說課稿)-2023-2024學年四年級下冊綜合實踐活動內(nèi)蒙古版
- 建設(shè)單位安全質(zhì)量管理制度
- 2024年中國安全應急產(chǎn)業(yè)發(fā)展研究報告
- 2024年優(yōu)居房產(chǎn)加盟業(yè)務保密協(xié)議3篇
- 中國當代文學專題-003-國開機考復習資料
- 企業(yè)自然災害安全應急預案
評論
0/150
提交評論