離散時(shí)間信號(hào)處理DSP習(xí)題.ppt_第1頁
離散時(shí)間信號(hào)處理DSP習(xí)題.ppt_第2頁
離散時(shí)間信號(hào)處理DSP習(xí)題.ppt_第3頁
離散時(shí)間信號(hào)處理DSP習(xí)題.ppt_第4頁
離散時(shí)間信號(hào)處理DSP習(xí)題.ppt_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

Chapter 1 Discrete-time system exercises,2,Linearity,A discrete-time system is linear if and only if H a x(n) = a H x(n) and H x1(n) + x2(n) = H x1(n) + H x2(n) for any constant a, and any sequences x(n), x1(n), and x2(n).,3,Time invariance,A discrete-time system is time invariant if and only if, for any input sequence x (n) and integer n0, then H x(n-n0)=y(n-n0) with y (n)= H x(n).,4,Causality,A discrete-time system is causal if and only if, when x1(n) = x2(n) for n n0, then H x1(n) = H x2(n), for n n0,5,1.1 (a) y(n)=(n+a)2x(n+4),1.1 Characterize the systems below as linear/nonlinear, causal/noncausal and time invariant/time varying. (a) y(n)=(n+a)2x(n+4) Linearity: Hax(n)=(n+a)2ax(n+4)=a(n+a)2x(n+4)=aHx(n) Hx1(n)+x2(n)=(n+a)2x1(n+4)+x2(n+4) = (n+a)2x1(n+4)+(n+a)2x2(n+4) =Hx1(n)+Hx2(n) therefore y(n) is linear.,6,1.1 (a) y(n)=(n+a)2x(n+4),Causality Because y(n)=(n+a)2x(n+4) i.e. the output for a certain time t = n of this system depends on the time after n (i.e. t = n+4). So the system is noncausal.,7,1.1 (a) y(n)=(n+a)2x(n+4),Time invariance Hx(n-n0)=(n+a)2x (n-n0+4) y(n-n0)=(n-n0+a)2x(n-n0+4) If y(n) = Hx(n), then y(n-n0)Hx(n-n0). Therefore the system is time varying.,8,1.1 (b) y(n)=ax(nT+T),(b) y(n)=ax(nT+T) Linearity Hbx(n)=abx(nT+T)=bHx(n) Hx1(n)+x2(n)=ax1(nT+T)+x2(nT+T)=Hx1(n)+Hx2(n) Therefore y(n) is linear. Causality The output for a certain time t = n of this system depends on the time after n (i.e. t = nT+T, supposing T0). So the system is noncausal. Time invariance Hx(n-n0)=ax(n-n0)T+T=y(n-n0) Therefore the system is time invariant.,9,1.1 (f) y(n)=x(n)/x(n+3),(f) y(n)=x(n)/x(n+3) Linearity Hax(n)=ax(n)/ax(n+3)=x(n)/x(n+3)ay(n) Hx1(n)+x2(n)=x1(n)+x2(n)/x1(n+3)+x2(n+3)y1(n)+y2(n) and therefore the system is nonlinear. Causality The output for a certain time t = n of this system depends on the time after n (i.e. t = n+3). So the system is noncausal. Time invariance Hx(n-n0)=x(n-n0)/x(n-n0+3)=y(n-n0) so the system is time invariant.,10,Periodic sequence,A sequence x(n) is defined to be periodic if and only if there is an integer N0 such that x(n) = x(n + N) for all n. In such a case, N is called the period of the sequence.,11,1.2,1.2 For each of the discrete signals below, determine whether they are period or not. Calculate the periods of those that are periodic. (a) (c) Solution (a) N is an integer and N 0.,12,1.2,if x(n) = x(n+N), that is x(n) is periodic, and the period is N = 15. (c) if x(n) = x(n+N), that is x(n) is periodic, and the period is N = 54.,13,1.4 (b),Solution:,* If x(i), ;y(j), , then,16,1.17 (a),1.17 Discuss the stability of the systems described by the impulse responses below: h(n)=2-nu

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論