活性粉混凝土之破壞分析與尺寸效應(yīng)研究.pdf_第1頁
活性粉混凝土之破壞分析與尺寸效應(yīng)研究.pdf_第2頁
活性粉混凝土之破壞分析與尺寸效應(yīng)研究.pdf_第3頁
活性粉混凝土之破壞分析與尺寸效應(yīng)研究.pdf_第4頁
活性粉混凝土之破壞分析與尺寸效應(yīng)研究.pdf_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

兩岸技術(shù) 315 2014年第12期 (總第141期)江西建材 活性粉混凝土之破壞分析與尺寸效應(yīng)研究 鄭瑞濱 博士 ( 臺(tái)灣混凝土學(xué)會(huì)秘書長(zhǎng)) 1 引言 鋼纖維混凝土之破壞機(jī)制(mechanism) , 可分成 混凝土漿體達(dá)到極限拉力強(qiáng)度應(yīng)力時(shí)先行開裂, 并將 應(yīng)力轉(zhuǎn)移給纖維, 纖維開始作用的第一階段, 而后, 隨著纖維傳遞應(yīng)力的增加, 混凝土與纖維之界面剝離 (debonding) 以及纖維破壞等三個(gè)階段。 纖維破壞階段 的成因, 一般區(qū)分成纖維握裹長(zhǎng)度不足, 隨著剝離作用 的進(jìn)行, 將使纖維傳遞之應(yīng)力漸次減至于零, 所形成之 拉脫破壞; 纖維握裹良好且長(zhǎng)度足夠, 則纖維就會(huì)在一 定長(zhǎng)度的剝離部位產(chǎn)生斷裂的拉斷破壞; 以及受剪切 作用產(chǎn)生的剪力破壞等4-5。 三個(gè)階段的破壞機(jī)制, 使得 原為脆性的混凝土材料得以因纖維的添加而展現(xiàn)不同 的性質(zhì)差異。 前述不同性質(zhì)差異的展現(xiàn), 主要因素乃是由于混 凝土與纖維間存在可傳遞交互作用之握裹力使之可 提升混凝土之受力行為, 同時(shí)也制止了裂縫的延伸4。 破壞過程隨應(yīng)力轉(zhuǎn)移給纖維, 且纖維兩端因握裹力的 錨定因素, 錨定于裂縫兩邊漿體上, 使纖維于裂縫面 間形成架橋效應(yīng)(bridging effect)抵抗裂縫之伸展。 架橋效應(yīng)使得裂縫于開裂過程可按照纖維的橋接作 用程度, 區(qū)分為如圖1之無纖維束制區(qū) (Traction Free Zone) 、 纖維束制區(qū) (Fiber Traction Zone) 以及破壞過程 區(qū) (Fracture Process Zone)等三區(qū)域。 無纖維束制區(qū)中, 由于纖維已被拉斷或拉脫, 而失去束制能力, 因此其 裂縫面上的應(yīng)力為零。 纖維束制區(qū)內(nèi)則因纖維束制應(yīng) 力c與其位置及裂縫面之張開位移量(Crack opening displacement)有關(guān): 裂縫尖端處, 由于裂縫開口為零, 因此其束制能力最大; 裂縫開口較大的區(qū)域, 由于纖維 被拔出的比例多, 其相對(duì)握裹部分少, 以致束制能力較 差, 即是第二章所建立應(yīng)力隨開口位移越大而呈現(xiàn)遞 減現(xiàn)象的意涵3-5。 破壞過程區(qū), 則是位于裂縫尖端之 后微細(xì)裂縫發(fā)生之所在區(qū)域, 其范圍的大小與添加纖 維含量、 纖維種類具甚大關(guān)系。 就圖2(a) 所示, 含預(yù)置裂縫之抗彎試體的受力過 程而言, 抗彎過程中, ABC斷面, 由下而上可區(qū)分為纖維 束制區(qū)、 纖維橋接區(qū)以及破壞過程區(qū)等。 且就試驗(yàn)過程 外力引致之內(nèi)應(yīng)力平衡來說, 斷面BC段中, 破壞過程區(qū) 與纖維束制區(qū)提供力平衡中之拉力。 因此, 若裂縫尖端 的開口位移(Crack Tip Opening Displacement, CTOD) 、 破壞過程區(qū)頂點(diǎn)為可求得且在開口位移變化由破壞過 程區(qū)頂點(diǎn)向下發(fā)展過程呈現(xiàn)線性變化的假設(shè)下 , 則測(cè)試 試體可承受之外力, 將可透過第二章建立之應(yīng)力、 開口 圖 1 纖維混凝土裂縫開裂過程示意圖 278-327 兩岸技術(shù).indd 3152014-5-30 0:43:35 兩岸技術(shù) 316 2014年第12期 (總第141期)江西建材 位移關(guān)系曲線而求得12。 前述問題的探討, 在中低降服強(qiáng)度的鋼材材料中, 已多所研究15-21。 彈塑性材料于受力后, 在裂縫尖端產(chǎn) 生大范圍的降伏區(qū)域, 此時(shí)變形發(fā)展較快而應(yīng)力上升 緩慢具變形集中的現(xiàn)象, 因而, 在前述的狀況下, 采用 應(yīng)變或位移作為象征破壞的物理參數(shù)將更為適合, 如 同混凝土裂縫產(chǎn)生后的變形問題探討上, 一般建議以 應(yīng)力-開口位移關(guān)系來表征破壞模式為一相似的概念。 前述采用應(yīng)變或位移作為象征破壞的方法, 已廣泛應(yīng) 用于壓力容器的安全評(píng)估中22-23。 茲以探討RPC材料于 前述工程的應(yīng)用可能, 因而, 本章在前述條件下, 將以 試驗(yàn)的方法, 進(jìn)行相關(guān)裂縫尖端的開口位移(Crack Tip Opening Displacement, CTOD)關(guān)系、 破壞過程區(qū)頂點(diǎn)分 析等探討, 為本文的第一個(gè)主題。 此外, 對(duì)于一般的結(jié)構(gòu)物來說, 在實(shí)驗(yàn)室中所使 用的試體尺寸均為較小的尺寸, 有些與實(shí)體相差甚至數(shù) 十倍之多。 同樣的骨材粒徑, 于實(shí)驗(yàn)室的試體尺寸中屬 于粗骨材, 但對(duì)于大了數(shù)十倍的壩體尺寸而言就微不足 道了 , 這些差異是造成混凝土尺寸效應(yīng)存在的主要原 因6。 因此, 混凝土的強(qiáng)度必須視其結(jié)構(gòu)尺寸與所組成 的骨材尺寸大小之間的關(guān)系來決定其破壞準(zhǔn)則, 不能 直接用強(qiáng)度準(zhǔn)則(Strength Criterion)或線彈性破壞力 學(xué)(Linear-Elastic Fracture Mechanic, 簡(jiǎn)稱LEFM)來推 算, 此即是尺寸效應(yīng)定律 (Size Effect Law) 的觀念。 相關(guān)尺寸效應(yīng)定律的應(yīng)用上, 已累積相當(dāng)?shù)奈墨I(xiàn)數(shù) 據(jù): Walsh24分別以六種不同的混凝土材料, 并將幾何形 狀相似但尺寸大小不同的試體, 以三點(diǎn)抗彎試驗(yàn)所求得 之結(jié)果。 整理繪制線性回歸圖形, 該文獻(xiàn)的研究結(jié)論指 出尺寸效應(yīng)理論與其研究成果契合良好。 唐2采用Bazant 的方法, 針對(duì)骨材粒徑、 纖維含量的不同對(duì)于尺寸效應(yīng) 之影響進(jìn)行探討, 亦證明SEL的適用性, 其并發(fā)現(xiàn)骨材粒 徑越大, 其抗彎強(qiáng)度越大, 卻也影響了鋼纖維在混凝土 中之均勻分布, 減低對(duì)微細(xì)裂縫的束制作用, 而骨材粒 徑小, 抗彎強(qiáng)度低, 但卻能使鋼纖維在混凝土分布較為 均勻, 而增加對(duì)微細(xì)裂縫的束制。 因此在考慮鋼纖維含 量及最大骨材粒徑之混和效應(yīng)時(shí), 必須考慮何種機(jī)制較 強(qiáng), 以便決定其抗彎強(qiáng)度的大小。 文獻(xiàn)6更針對(duì)混凝土 Mode及Mode破壞時(shí)之尺寸效應(yīng)做了探討, 結(jié)果顯示, 圖 2 含預(yù)置裂縫之抗彎試體的受力過程 278-327 兩岸技術(shù).indd 3162014-5-30 0:43:35 兩岸技術(shù) 317 2014年第12期 (總第141期)江西建材 不管型破壞或型破壞均具有尺寸效應(yīng)之情況。 研究文獻(xiàn)的共同結(jié)論指出, 尺寸效應(yīng)定律的探討, 系乎材料破壞準(zhǔn)則適切的選用與否。 就RPC的應(yīng)用上而 言, 提供使用者可以藉由不同試體尺寸的試驗(yàn), 來推算 其他各種尺寸, 甚至是超大尺寸結(jié)構(gòu)所應(yīng)有的破壞特性 及力學(xué)參數(shù), 是重要的環(huán)節(jié)。 因此, 本文將在Bazant的 研究基礎(chǔ)下 , 進(jìn)行相關(guān)的試驗(yàn)研究, 提供破壞準(zhǔn)則的選 用依據(jù)。 2 試驗(yàn)計(jì)劃 2.1 試驗(yàn)變數(shù) 本文使用纖維含量0%、 1%及2%等活性粉混凝土 配比, 經(jīng)拌和、 高溫養(yǎng)生后, 于齡期七天時(shí)進(jìn)行試驗(yàn)。 試驗(yàn)的內(nèi)容含括510cm之抗壓試驗(yàn)試體、 用以尺寸 效應(yīng)分析之1020cm劈裂試驗(yàn)試體以及用以進(jìn)行破 壞分析、 尺寸效應(yīng)探討, 含預(yù)裂縫寬度為2mm、 裂縫長(zhǎng) 度為梁深一半之3412cm、 4416cm、 7.5430cm 及12448cm四種尺寸試體, 用以進(jìn)行破壞分析、 尺寸 效應(yīng)探討。 試體之尺寸詳如圖3所示。 測(cè)試之配比、 試體 尺寸與代號(hào)詳如表1。 2.2 試驗(yàn)架設(shè)與量測(cè)數(shù)據(jù) 本文劈裂試驗(yàn)系依據(jù)ASTM C39規(guī)范進(jìn)行。 相關(guān)的尺寸效應(yīng)探討與破壞分析之試驗(yàn)進(jìn)行前, 先于試體預(yù)置裂縫尖端至試驗(yàn)受壓側(cè)之間, 依試體尺 圖 3 試驗(yàn)試體尺寸示意圖 表 1 配比表(a) 、 試驗(yàn)試體尺寸與代號(hào)表(b) (a)配比表(kg/m3) 材料名稱材料重量備注 水泥720波特蘭II型 石英砂填充材1100600m 硅灰2500.10.2m 強(qiáng)塑劑40Type G 鋼纖維含量 0(0%) 80(1%) 160(2%) 240(3%) 括號(hào)內(nèi)為體積含量 水204 (b)試驗(yàn)試體尺寸與代號(hào)表 纖維 含量 試驗(yàn)試體試體 試體尺寸 cm 試體 數(shù)量 試體代號(hào) 0% 預(yù)置裂縫試體 34123SS-Vf=0% 44123S-Vf=0% 7.54123M-Vf=0% 484123L-Vf=0% 劈裂試驗(yàn)試體10203- 抗壓試驗(yàn)試體5103 1% 預(yù)置裂縫試體 34123SS-Vf=1% 44123S-Vf=1% 7.54123M-Vf=1% 484123L-Vf=1% 劈裂試驗(yàn)試體10203- 抗壓試驗(yàn)試體5103 2% 預(yù)置裂縫試體 34123SS-Vf=2% 44123S-Vf=2% 7.54123M-Vf=2% 484123L-Vf=2% 劈裂試驗(yàn)試體10203- 抗壓試驗(yàn)試體5103 278-327 兩岸技術(shù).indd 3172014-5-30 0:43:35 兩岸技術(shù) 318 2014年第12期 (總第141期)江西建材 寸, 黏貼TTI Division所制造, 量度范圍5mm30mm不等 之KARK-gage, 如圖4(b) , 以便利于試驗(yàn)進(jìn)行時(shí), 透過 Model 1078之裂縫長(zhǎng)度量測(cè)工具, 量測(cè)當(dāng)產(chǎn)生裂縫時(shí), 引發(fā)電阻的改變量值, 進(jìn)而量化為裂縫之伸展長(zhǎng)度。 其 量測(cè)精度度為0.05% Full Scale。 試驗(yàn)進(jìn)行時(shí), 試體架設(shè)于美國MTS公司所制造 之100噸萬能試驗(yàn)機(jī)預(yù)置之H型鋼上, 圖4(a) , 試驗(yàn) 加載之速率設(shè)定為0.005mm/sec。 每次試驗(yàn)時(shí), 除記 錄MTS施加之外力歷程及以前述之裂縫規(guī)量測(cè)裂縫 之長(zhǎng)度外, 亦以日本Tokyo Sokki Kenkyujo制造、 量測(cè) 范圍0mm25mm、 精度為0.05mm的LVDT同時(shí)量測(cè)中 點(diǎn)變位, 以及使用MTS系統(tǒng)之5mm量測(cè)范圍、 精度為 0.0002mm之COD gage進(jìn)行裂縫開口變位的量測(cè), 圖4 (c) 。 全部的量測(cè)數(shù)據(jù), 并透過TDS302數(shù)據(jù)擷取系統(tǒng), 匯集于個(gè)人計(jì)算機(jī)中。 試驗(yàn)進(jìn)行后, 將試驗(yàn)中同時(shí)收集 之施加外力、 裂縫長(zhǎng)度變化、 中點(diǎn)變位以及裂縫開口位 移等量測(cè)結(jié)果進(jìn)行分析完成工作。 3 抗壓與劈裂張力試驗(yàn) 表2為相關(guān)測(cè)試試體之強(qiáng)度數(shù)據(jù)匯整, 將提供作為 破壞試驗(yàn)與尺寸效應(yīng)分析中使用。 表3為相關(guān)測(cè)試試體之強(qiáng)度數(shù)據(jù)轉(zhuǎn)換成抗壓與劈 裂張力強(qiáng)度之結(jié)果, 從表中可見, 本試驗(yàn)使用材料之平 均抗壓強(qiáng)度約為168.6MPa187.3MPa之間, 試體之變異 性約在1.39%2.84%之間, 與第二章試驗(yàn)結(jié)果相符。 表 中亦可見劈裂張力強(qiáng)度試驗(yàn)結(jié)果。 本試驗(yàn)使用材料之 平均劈裂強(qiáng)度, 分別為0%纖維含量的8.37MPa、 1%纖 維含量的12.63MPa以及2%纖維含量的12.63MPa, 并有 8.8%9.6%的變異情形發(fā)生。 其趨勢(shì)呈現(xiàn)隨纖維含量 的增加而增加的現(xiàn)象, 顯現(xiàn)鋼纖維的添加, 對(duì)于劈裂張 力強(qiáng)度的幫助。 4 中點(diǎn)變位與開口位移關(guān)系 Wells25根據(jù)大量實(shí)驗(yàn)及工程經(jīng)驗(yàn)于提出以裂縫 圖 4 試驗(yàn)架設(shè)示意 278-327 兩岸技術(shù).indd 3182014-5-30 0:43:36 兩岸技術(shù) 319 2014年第12期 (總第141期)江西建材 尖端開口位移(Crack Tip Opening Displacement, 簡(jiǎn)稱 CTOD)作為表征破壞的物理參數(shù), 從而建立裂縫在彈 塑性條件下的破壞準(zhǔn)則。 Wells提出之準(zhǔn)則認(rèn)為: 當(dāng)裂縫 尖端開口位移值接近臨界值c時(shí), 裂縫即將開裂, 而 當(dāng) c時(shí), 則裂縫即產(chǎn)生開裂。 式中可由實(shí)驗(yàn)測(cè)出或 經(jīng)計(jì)算得到, 裂縫尖端開口位移值c則由實(shí)驗(yàn)測(cè)定, 為 材料彈塑性破壞韌性的材料常數(shù)。 CTOD準(zhǔn)則應(yīng)用于焊接結(jié)構(gòu)及壓力容器的破壞安全 分析非常有效, 而且簡(jiǎn)單可行, 加上c的量測(cè)方法比較 簡(jiǎn)單, 在工程上應(yīng)用的較為普遍22-23, 一般用以計(jì)算裂 縫開口位移的公式, 乃是根據(jù)Dugdale與Muskhelishvili 所建立的DM模型推導(dǎo)出來。 而c則可以透過三點(diǎn)彎 曲 (Three Point Bending, TPB)試驗(yàn)進(jìn)行量測(cè)26。 以TPB試驗(yàn)過程之變形幾何及局部材料行為來看, 若試驗(yàn)試體之試體深度w, 預(yù)置裂縫長(zhǎng)度為a, TPB試驗(yàn) 進(jìn)行過程, 隨中點(diǎn)變位產(chǎn)生之撓度(deflection,) 以及 以MTS系統(tǒng)COD gage量測(cè)之裂縫開口位置產(chǎn)生張開現(xiàn) 象 (V)如圖5所示。 則該裂縫開口位置張開(V)大小, 可認(rèn)為乃是由于裂縫尖端繞圖中, 破壞過程區(qū)頂點(diǎn)O旋 轉(zhuǎn)的結(jié)果。 由圖5 (c) 的幾何關(guān)系來看, 應(yīng)該滿足: (1) 上式中,為破壞過程區(qū)加上纖維橋接區(qū)的尺 表 2 相關(guān)測(cè)試試體之強(qiáng)度資料 纖維含量試驗(yàn)試體試體試體尺寸(cm)試體數(shù)量試體代號(hào) 試驗(yàn)強(qiáng)度數(shù)據(jù)(KN) #1#2#3平均值變異數(shù) 0% 預(yù)置裂縫試體 34123SS-Vf=0%0.450.510.620.530.09 44123S-Vf=0%0.480.550.560.530.04 7.54123M-Vf=0%0.850.930.770.850.08 484123L-Vf=0%1.211.351.281.280.07 劈裂試驗(yàn)試體10203-238.1293.7257.3263.028.3 抗壓試驗(yàn)試體5103-334.4334.4324.6331.15.7 1% 預(yù)置裂縫試體 34123SS-Vf=1%0.830.850.890.860.03 44123S-Vf=1%0.980.871.020.960.08 7.54123M-Vf=1%2.592.152.252.330.23 484123L-Vf=1%5.084.985.065.040.05 劈裂試驗(yàn)試體10203-354.1395.2441.1396.843.5 抗壓試驗(yàn)試體5103-349.5359.1338.3349.010.4 2% 預(yù)置裂縫試體 34123SS-Vf=2%1.211.091.071.120.08 44123S-Vf=2%1.101.281.271.220.10 7.54123M-Vf=2%3.853.83.283.640.32 484123L-Vf=2%6.135.155.545.610.49 劈裂試驗(yàn)試體10203-556.7445.5474.1492.157.8 抗壓試驗(yàn)試體5103-381.3365.8356.0367.712.8 表 3 抗壓強(qiáng)度與劈裂張力強(qiáng)度 纖維含量No.1No.2N0.3平均偏離系數(shù) 抗壓強(qiáng)度 MPa 0%170.3170.3165.3168.61.4% 1%178.0182.9172.3177.72.4% 2%194.2186.3181.3187.32.84% 劈裂強(qiáng)度 MPa 0%7.589.358.198.378.8% 1%11.2712.5814.0412.638.9% 2%17.7214.1815.0915.669.6% 278-327 兩岸技術(shù).indd 3192014-5-30 0:43:36 兩岸技術(shù) 320 2014年第12期 (總第141期)江西建材 寸;則是破壞過程區(qū)、 纖維橋接區(qū)的尺寸以及預(yù)置 裂縫長(zhǎng)度(a) 、 用以定位CMOD測(cè)點(diǎn)的黏貼物厚度(h) 的總和;則是裂縫尖端開口位移之半( /2) ;則 為CMOD gage量測(cè)值之半 (V/2) 。 由前述之幾何關(guān)系說明, 若破壞過程區(qū)加上纖維 橋接區(qū)的尺寸可求出, 則裂縫尖端開口位移, 即可透過 量測(cè)之開口位移, 按比例關(guān)系求得。 亦即得到破壞過程 區(qū)加上纖維橋接區(qū)的尺寸, 是求得裂縫尖端開口位移 的關(guān)鍵。 破壞過程區(qū)加上纖維橋接區(qū)尺寸的求得, 在相關(guān)彈 塑性材料中, 一般認(rèn)為其與試驗(yàn)試體實(shí)際深度 (w-a) 成 一比例關(guān)系, 該比例系數(shù)即是所謂塑性轉(zhuǎn)動(dòng)因子 (plastic rotation factor, rp) 。 也就是破壞過程區(qū)加上纖維橋接區(qū)的 尺寸應(yīng)為rp(w-a) 的大小 22-23。 據(jù)此, 則試驗(yàn)過程量測(cè) 得到之中點(diǎn)變位關(guān)系, 存在比例關(guān)系的條件, 即可求得 塑性轉(zhuǎn)動(dòng)因子 (plastic rotation factor, rp) : (2) (3) 使用 (1) (3) 式, 則裂縫開口位移, 可表達(dá)成: (4) 圖6為一般材料的試驗(yàn)外力與CMOD關(guān)系曲線, 曲 線中用以定義臨界裂縫開口位移量c的方法, 一般以最 大荷載Pmax或圖中之突降點(diǎn)Pc據(jù)以選用。 本試驗(yàn)的進(jìn)行, 以位移控制方式行之, 試驗(yàn)曲線上的任一試驗(yàn)數(shù)據(jù), 皆 可以加卸除方式, 視為單一獨(dú)立的試驗(yàn)過程, 本文將據(jù) 此, 使用 (4) 式進(jìn)行計(jì)算試驗(yàn)中不同裂縫長(zhǎng)度產(chǎn)生時(shí)的 臨界開口位移量c。 圖7為裂縫計(jì)量測(cè)得之裂縫長(zhǎng)度隨時(shí)間的成長(zhǎng)曲 線。 由試驗(yàn)曲線中L-、 M-、 S-系列之試驗(yàn)結(jié)果顯示, 隨 纖維添加量的摻入, 造成裂縫長(zhǎng)度的拓延速率亦有所 減緩。 就試體尺寸的影響來說, 越小的試驗(yàn)試體, 其裂 縫拓延的速率越慢。 圖 5 TPB試驗(yàn)過程之變形幾何 圖 6 一般材料的試驗(yàn)外力與開口位移關(guān)系曲線 圖 7 裂縫應(yīng)變計(jì)量測(cè)得裂縫長(zhǎng)度隨時(shí)間之成長(zhǎng)關(guān)系 278-327 兩岸技術(shù).indd 3202014-5-30 0:43:37 兩岸技術(shù) 321 2014年第12期 (總第141期)江西建材 圖8為不同纖維含量下, 不同尺寸試驗(yàn)試體之荷重 與中央載重點(diǎn)位移之關(guān)系曲線。S-系列之試驗(yàn)結(jié)果顯 示, 0纖維含量之試驗(yàn)試體于漿體開裂后, 可承載外力 瞬間降至為零, 屬突發(fā)性的破壞型態(tài)。 而1、 2之纖 維含量者, 其最大可承載外力并無太大差別。 整個(gè)含纖 維試驗(yàn)組之外力-變位曲線顯現(xiàn)彈塑性的材料特征。 M-系列之試驗(yàn)結(jié)果顯示, 0纖維含量之試驗(yàn)試 體仍為突發(fā)性的破壞型態(tài)。 而1、 2之纖維含量者, 最大可承載外力與纖維含量呈現(xiàn)正相關(guān)。 1、2纖 維含量之試驗(yàn)試體, 其試驗(yàn)過程之外力-變位曲線亦 顯現(xiàn)彈塑性的材料特征。 L-系列的試驗(yàn)現(xiàn)象與M系列 相似。 圖9為試驗(yàn)載重與裂縫開口位移之關(guān)系曲線, 其趨 勢(shì)與外力-中點(diǎn)變位關(guān)系曲線一致。 圖10為預(yù)置裂縫開 口位移與中點(diǎn)變位關(guān)系曲線, 由曲線中可以看出無論 試體大小如何, 除開始階段外, 大致呈現(xiàn)一致的線性關(guān) 系。 試體尺寸與1、 2的纖維含量并不致造成裂縫開 口位移與中點(diǎn)變位關(guān)系曲線的重大變化。 圖11為依據(jù)(4-3)式, 以圖7圖10之試驗(yàn)數(shù)據(jù), 進(jìn)行計(jì)算所得之塑性轉(zhuǎn)動(dòng)因子(plastic rotation factor, rp) 。 該計(jì)算結(jié)果顯示, 無纖維含量的試驗(yàn)試體, 其塑 性轉(zhuǎn)動(dòng)因子在裂縫開口變位很小時(shí), 即變?yōu)楹艽蟮臄?shù) 值, 說明裂縫開口位移一產(chǎn)生, 則試體將開裂成兩半, 并以剛體方式產(chǎn)生繞行轉(zhuǎn)動(dòng)半徑為無限大的運(yùn)動(dòng)情 況, 此與試驗(yàn)結(jié)果觀察到無添加纖維試驗(yàn)組之試驗(yàn)過 程都產(chǎn)生突發(fā)性的破壞型態(tài)相符。 當(dāng)試驗(yàn)試體添加有 纖維含量時(shí), 則裂縫開口位移產(chǎn)生后, 塑性轉(zhuǎn)動(dòng)因子將 因纖維的存在而變小且依裂縫開口位移量的增加而發(fā) 圖 8 施加外力與試驗(yàn)試體中點(diǎn)變位關(guān)系圖 9 施加外力與預(yù)置裂縫開口位移關(guān)系曲線 圖 10 預(yù)置裂縫開口位移與中點(diǎn)變位關(guān)系曲線圖 11 塑性轉(zhuǎn)動(dòng)因子與預(yù)置裂縫開口位移關(guān)系 278-327 兩岸技術(shù).indd 3212014-5-30 0:43:37 兩岸技術(shù) 322 2014年第12期 (總第141期)江西建材 圖 12 塑性轉(zhuǎn)動(dòng)半徑與試驗(yàn)試體中點(diǎn)位移曲線 圖 13 裂縫尖端開口位移與試驗(yàn)試體中點(diǎn)位移曲線圖 14 RPC應(yīng)用的安全性評(píng)估建議流程 生非線性的增加。 圖12系1、 2纖維含量之試驗(yàn)組, 依據(jù)圖11之塑 性轉(zhuǎn)動(dòng)因子與相同時(shí)間下的裂縫長(zhǎng)度等試驗(yàn)結(jié)果計(jì)算 而得, 顯示破壞過程區(qū)加上纖維橋接區(qū)的尺寸大小, 也 就是rp(w-a) 的數(shù)值與中點(diǎn)變位之關(guān)系曲線。 圖11之曲線中可以看出, rp(w-a) 的尺寸大小與試 體的尺寸、 纖維含量有所關(guān)聯(lián)。 L- Vf=1%、 M- Vf=1%以 及S- Vf=1% 的測(cè)試, 呈現(xiàn)尺寸越大者, 其rp(w-a) 的尺 寸越大; L- Vf=2%、 M- Vf=2%以及S- Vf=2% 的試驗(yàn)結(jié) 果亦說明相類似的現(xiàn)象。 就相同試體尺寸之L-系列來 說, 纖維含量的增加, 使得rp(w-a) 的尺寸相對(duì)減少, 此 趨勢(shì)亦顯見于M-、 S-系列的測(cè)試結(jié)果中。 圖12為依據(jù)前述的幾何條件, 計(jì)算之裂縫尖端臨界 開口位移量c, 建立之c-試體中點(diǎn)位移關(guān)系曲線, 該曲 線明確說明試體中點(diǎn)變位的變化歷程與c之間的關(guān)系, 至此, 在本試驗(yàn)幾何條件下RPC的c于焉建構(gòu)完成。 相 關(guān)建構(gòu)完成之?dāng)?shù)據(jù), 實(shí)可提供如圖13之安全性評(píng)估流 程中予以應(yīng)用。 5 應(yīng)力-開口位移曲線應(yīng)用分析 依據(jù)本試驗(yàn)結(jié)果, 吾人可求出相關(guān)試驗(yàn)條件下的最 大外力荷載、 中點(diǎn)變位及其相關(guān)臨界開口位移量、 塑性 轉(zhuǎn)動(dòng)半徑等關(guān)系。 因此, 透過建立之臨界開口位移量, 并以第二章建構(gòu)之應(yīng)力-開口位移曲線關(guān)系, 則塑性轉(zhuǎn) 動(dòng)半徑區(qū)間內(nèi)的應(yīng)力分布即可求得。 在受壓側(cè)應(yīng)變呈 現(xiàn)線性關(guān)系的假設(shè)條件下, 即可依據(jù)力平衡關(guān)系, 建構(gòu) 出該應(yīng)力-開口位移曲線下 , 試體可承受之外力荷載, 從 而與試驗(yàn)荷載比較。 表4為相關(guān)的計(jì)算結(jié)果與試驗(yàn)資料 之匯整。 表4顯示計(jì)算結(jié)果大都呈現(xiàn)低估的數(shù)值, 大部分計(jì) 算結(jié)果與試驗(yàn)外力的比對(duì)誤差在10以內(nèi), 但少數(shù)的 計(jì)算結(jié)果有較大的偏差。 圖15為相關(guān)試驗(yàn)與計(jì)算結(jié)果 的比較, 其說明文獻(xiàn)1所建構(gòu)之應(yīng)力-開口位移曲線與本 章建構(gòu)臨界開口位移關(guān)系之計(jì)算方法, 在提供應(yīng)用為 含裂縫構(gòu)件承載力分析時(shí), 將較為保守。 278-327 兩岸技術(shù).indd 3222014-5-30 0:43:38 兩岸技術(shù) 323 2014年第12期 (總第141期)江西建材 6 尺寸效應(yīng)分析 若將混凝土材料試驗(yàn)結(jié)果之張力強(qiáng)度, 荷載達(dá) 到最大值時(shí)之標(biāo)稱應(yīng)力強(qiáng)度(Nominal stress) N以及 混凝土試體深度d、 使用骨材最大粒徑da等, 量化 與之坐標(biāo)關(guān)系后, 其依據(jù)骨材粒徑、 試體尺寸 等差異, 大致可將量化的參數(shù), 分成當(dāng)趨近于零、 很大以及二者中間的狀況。 本文中之標(biāo)稱應(yīng)力強(qiáng)度 (Nominal stress), 其中Pmax為極限載重、 S為 試體跨距、 b為試體厚度、 d為混凝土試體深度。 當(dāng)很小, 則曲線呈一水平直線, 即 為一常數(shù)C, 從而得到, 為一般實(shí)驗(yàn)室中 較小試驗(yàn)試體適用的分析模式, 是所謂強(qiáng)度準(zhǔn)則的分 析方法。 該分析方法不考慮材料本身之缺陷如裂縫及 孔隙等, 因而得以彈性力學(xué)及塑性力學(xué)模型進(jìn)行相關(guān)的 分析, 藉由設(shè)計(jì)強(qiáng)度及容許應(yīng)力, 來判斷材料之破壞, 適合于較小尺寸試驗(yàn)試體的預(yù)測(cè)值。 當(dāng)很大時(shí),曲線呈一斜率為-1/2 的直線, 即其中為常數(shù)。 所以,適合于使用所謂線彈性破壞力學(xué) (linear elastic fracture mechanic)進(jìn)行相關(guān)的分析。 該分 析的模式, 要求材料塑性區(qū)范圍與材料尺寸相比小很多 時(shí)得以適用, 一般是指結(jié)構(gòu)尺寸超大 (exceptional large) 表 4 應(yīng)力-開口位移曲線關(guān)系的驗(yàn)證 No. of Test Specimen (mm) rp(w-a) (mm) c (mm) test data (kN) caculated result (kN) Error (%) L-Vf=1%-11.0347.240.505.084.599.6 L-Vf=1%-21.1952.090.644.984.931.0 L-Vf=1%-31.2654.180.725.065.07-0.2 L-Vf=2%-11.5124.790.396.134.0933.3 L-Vf=2%-21.7131.000.435.154.963.7 L-Vf=2%-31.7934.570.495.545.441.8 M-Vf=1%-11.5732.100.892.592.79-7.7 M-Vf=1%-21.7022.300.992.152.102.3 M-Vf=1%-31.8725.701.102.252.36-4.9 M-Vf=2%-11.3619.800.383.852.9523.4 M-Vf=2%-21.4725.300.453.803.615.0 M-Vf=2%-31.6722.800.543.283.31-0.9 S-Vf=1%-11.174.880.171.020.5546.1 S-Vf=1%-21.607.500.340.870.825.7 S-Vf=1%-31.818.270.430.980.908.2 S-Vf=2%-11.444.520.191.100.7829.1 S-Vf=2%-21.716.300.291.281.0716.4 S-Vf=2%-31.967.500.391.271.251.6 圖 15 驗(yàn)證計(jì)算與試驗(yàn)比對(duì) 278-327 兩岸技術(shù).indd 3232014-5-30 0:43:38 兩岸技術(shù) 324 2014年第12期 (總第141期)江西建材 圖 16 SS-、 S-、 M- 、 L-等試驗(yàn)系列之試驗(yàn)數(shù)據(jù)回歸直線 圖 17 不同纖維含量試驗(yàn)之試驗(yàn)數(shù)據(jù)與尺寸效應(yīng)定律模式曲線 表 5 尺寸效應(yīng)定律參數(shù) 截距 (C)斜率(A)B0 0%8.360.120.3571.9 1%5.890.010.41560.9 2%5.390.010.43781.2 之結(jié)構(gòu)體而言。 當(dāng)介于前述范圍間, 則其曲線為由小尺寸之水 平直線逐漸轉(zhuǎn)變?yōu)榇蟪叽绲男敝本€, 合適分析模型的 選用應(yīng)是介于線性破壞力學(xué)與與線彈性、 塑性理論間 的方法。 因此, Bazant提出了所謂尺寸效應(yīng)定律(Size Effect Law, 簡(jiǎn)稱SEL) , 用以預(yù)測(cè)分析構(gòu)件的破壞。 本 文將據(jù)此檢核并建議合適應(yīng)用于RPC試驗(yàn)試體的分析 模型。 Bazant指出, 混凝土材料的標(biāo)稱應(yīng)力強(qiáng)度N, 可以 表示如下: (5) 其中, B、 0為試驗(yàn)常數(shù), N、 、 d、 da之定義如前 所述。 (5)式中B、 0的試驗(yàn)常數(shù), 很難由試驗(yàn)數(shù)據(jù)來 準(zhǔn)確的定出, 因此, Bazant建議可將(5)式, 以兩邊平 方取對(duì)數(shù)的方式, 轉(zhuǎn)換為一直線方程式, 再由統(tǒng)計(jì)學(xué)上 的線性回歸方法(Linear regression) , 定出B及0之值, 即是: (6) (6)式 中,若 令 , 即可以得到 (7) 式的線性方程式: YAXC (7) (7)式的直線方程式中, Y軸截距將可計(jì)算參數(shù) B, 而后透過斜率A即可計(jì)算出0。 (7)式相較于對(duì)數(shù) 坐標(biāo)之尺寸效應(yīng)曲線, 若材料傾向于以強(qiáng)度準(zhǔn)則分析, 則線性回歸曲線將接近一斜率為零的水平線, 若材料 適合用線彈性破壞力學(xué)準(zhǔn)則來分析, 則線性回歸線的 斜率將越大。 圖16為SS-、 S-、 M- 、 L-等試驗(yàn)系列之試驗(yàn)數(shù)據(jù)回 歸結(jié)果, 其顯示纖維添加量0、 1、 2的試驗(yàn)斜率分 別為0.1163、 0.0105以及0.0069, 截距分別為8.36、 5.89 以及5.39等。 據(jù)此計(jì)算之B及0值如表5所示。 圖17為不同纖維含量試驗(yàn)之試驗(yàn)數(shù)據(jù)與尺寸效應(yīng) 定律的模式曲線。 由試驗(yàn)的結(jié)果可以看出, 使用0纖 維含量的RPC材料, 適合以線彈性破壞力學(xué)理論進(jìn)行相 關(guān)構(gòu)件應(yīng)用的計(jì)算檢核; 而1、 2纖維含量的RPC材 料應(yīng)用于構(gòu)件中, 傾向無須考慮材料本身缺陷, 得以彈 性力學(xué)及塑性力學(xué)模型進(jìn)行相關(guān)分析的強(qiáng)度準(zhǔn)則來判 斷材料之破壞。 278-327 兩岸技術(shù).indd 3242014-5-30 0:43:39 兩岸技術(shù) 325 2014年第12期 (總第141期)江西建材 結(jié)語 本節(jié)完成RPC材料之破壞分析與尺寸效應(yīng)問題的 探討, 相關(guān)研究成果整理如下: 試驗(yàn)數(shù)據(jù), 建構(gòu)完成不同尺寸、 不同纖維含量試驗(yàn) 試體之塑性轉(zhuǎn)動(dòng)因子 (plastic rotation factor, rp) 的計(jì)算, 塑性轉(zhuǎn)動(dòng)因子因纖維的存在而變小且依裂縫開口位移 量的增加而非線性的增加。 本研究建構(gòu)了破壞過程區(qū)加上纖維橋接區(qū)的尺寸 大小與中點(diǎn)變位之關(guān)系曲線。 研究完成臨界裂縫開口位移的分析, 其可配合第二章 應(yīng)力-開口位移曲線進(jìn)行含裂縫活性粉混凝土之承載力計(jì) 算并提供為相關(guān)活性粉混凝土安全評(píng)估之應(yīng)用參考。 研究完成不同纖維含量活性粉混凝土尺寸效應(yīng)的 探討, 0纖維含量的活性粉混凝土構(gòu)件, 適合以線彈 性破壞力學(xué)模式分析, 而1、 2纖維含量的活性粉混 凝土構(gòu)件, 則偏向于以強(qiáng)度準(zhǔn)則來控制。 參考文獻(xiàn) 1 何曜宇(陳振川指導(dǎo)), ” 活性粉混凝土破壞行為之研究” , 碩士論 文, 國立臺(tái)灣大學(xué)土木研究所, 民國89年。 2 唐開明(陳振川指導(dǎo)), ”混凝土材料之破壞行為研究及尺寸效 應(yīng)” , 碩士論文, 國立臺(tái)灣大學(xué)土木研究所, 民國78年。 3 楊錦懷(陳振川、 陳清泉指導(dǎo)), ” 纖維加強(qiáng)水泥復(fù)合材料之干縮、 黏彈與破壞行為研究” , 博士論文, 國立臺(tái)灣大學(xué)土木研究所, 民國78年。 4 BettermanL.R.,C. Ouyang,t and S.P. Shah, ”Fiber-Matrix Interaction in Microfiber-Reinforced Mortar,” Advn. Cem. Bas. Mat, 2, pp53-61,1995. 5 Robert C. Wetherhold, J. Bos,” Ductile reinforcements for enhancing fracture resistance in composite materials,” Theoretical and Applied Fracture Mechanics 33 ,pp 83-91,2000. 6 Bazant Z.P., J. Planas, Fracture and Size Effect in Concrete and Other Quasibrittle Materials, CRC Press, New York, 1998. 7 Bazant Z.P., B. Oh, Crack band theory for fracture of concrete, Mater. Struct. 16, pp 155-177, 1983. 8 Gopalaratnam V., S. Shah, Softening response of plain concrete in direct tension, Struct. J. ACI, 82, pp310-323,1985. 9 RILEM,50-FMC Committee on Fracture Mechanics of Concrete, “Determination of the fracture energy of mortar and concrete by means of three-point bend tests of notched beams,” Mater. Constr. 18, pp 285-290,1986. 10 Gupta A., H. Akbar, Cracking in reinforced concrete analysis, J. Struct. Eng. ASCE 110 pp 1735-1746, 1984. 11 Koji Otsuka, Hidehumi Date,” Fracture Process Zone in Concrete Tension Specimen,” Engineering Fracture Mechanics, 65 ,pp 111-131, 2000. 12 Galveza,J.C. , J. C. Cervenkab, D.A. Cendonc, V. Saouma , “A discrete crack approach to normal/shear cracking of concrete,” Cement and Concrete Research, 32, pp1567-1585, 2002. 13 Elices M., J. Planas, Material models, in: L. Elfgren (Ed.), Fracture Mechanics of Concrete Structures, Chapman & Hall, London, 1989, pp16-66. 14 Broek D., Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers, Dordrecht, 1986, pp. 374-380. 15 Carol I., P. Prat, M. Lopez, “Normal/shear cracking model: Application to discrete crack analysis,” Journal of Engineering. Mechanics. ASCE, 123,pp765-773, 1977. 16 Weng T.L., C.T. Sun,” A study of fracture criteria for ductile materials,” Engineering Failure Analysis, 7, pp 101-125 , 2000. 17 Green G, Knoll JF.,” On effect of thickness on ductile crack growth in mild steel,” Journal of the Mechanics and Physics of Solids, 23,167-174.1975. 18 Steenkamp PAJM, Latzko DGH, Bakker A.” Engineering application of elastic-plastic fracture

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論