在注塑模應(yīng)用方面,外形電鑄鎳的技術(shù)注釋外文翻譯@中英文翻譯@外文文獻翻譯_第1頁
在注塑模應(yīng)用方面,外形電鑄鎳的技術(shù)注釋外文翻譯@中英文翻譯@外文文獻翻譯_第2頁
在注塑模應(yīng)用方面,外形電鑄鎳的技術(shù)注釋外文翻譯@中英文翻譯@外文文獻翻譯_第3頁
在注塑模應(yīng)用方面,外形電鑄鎳的技術(shù)注釋外文翻譯@中英文翻譯@外文文獻翻譯_第4頁
在注塑模應(yīng)用方面,外形電鑄鎳的技術(shù)注釋外文翻譯@中英文翻譯@外文文獻翻譯_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

南京理工大學(xué)泰州科技學(xué)院 畢業(yè)設(shè)計 (論文 )外文資料翻譯 系 部: 機械工程系 專 業(yè): 機械工程及自動化 姓 名: 王 鋒 學(xué) 號: 05010230 外文出處: 中國機械資訊網(wǎng) BBS.CMIW.CN 附 件: 1.外文資料翻譯譯文; 2.外文原文。 指導(dǎo)教師評語: 譯文 基本符合翻譯原文 ,個別詞匯不符合語境。 語句較為通順,條理比較清楚,專業(yè)用語翻譯基本恰當,符合中文語法,整體翻譯質(zhì)量較好。 簽名: 年 月 日 附件 1:外文資 料翻譯譯文 在注塑模應(yīng)用方面,外形電鑄 鎳的技術(shù)注釋 摘要 在過去幾年 , 快速成型技術(shù)及快速模具 在 發(fā)達國家已廣泛 應(yīng)用。 在這篇文章中 ,作為一種 范例, 分析電芯塑料注射模具 。 通過快速成型 , 利用差分系統(tǒng) 得到 鎳殼模型 。 主要目的是分析鎳 殼 力學(xué)特征 , 學(xué)習(xí)不同方面的金相組織 、 硬度 、 內(nèi) 壓,失敗 的 可能 性。以 這些特色的有關(guān)參數(shù)生產(chǎn)鎳殼電設(shè)備 , 終于 得到了 一個注塑模具核心 部分。 關(guān)鍵詞 : 電鍍; 電制; 顯微組織; 鎳 文章概要 1. 引言 2. 注塑模具制造過程 3. 電 鑄 殼獲取 : 設(shè)備 4. 獲得硬度 5. 金相組織 6. 內(nèi)壓 7. 測試的注塑模具 8. 結(jié)論 1引言 現(xiàn)代工業(yè)遇到的最重要的挑戰(zhàn) 之一 是 在很短的時間內(nèi)向消費者 提供更好的產(chǎn)品 。 因此 ,現(xiàn)代工業(yè)必須有更 強 的競爭性和 適應(yīng)更合理的 生產(chǎn)成本 。 毫無疑問 , 結(jié)合時間 和 質(zhì)量并不容易 ,因為他們經(jīng)?;ハ?變換。 生產(chǎn) 系統(tǒng)的 科技進步 , 在方式將可更有效和可行的 促進 組合 ,例如 ,如果是演化的觀測系統(tǒng)和注塑技術(shù)、我們得出的結(jié)論是事實上 可以用很少的時間和高質(zhì)量把新產(chǎn)品推向市場。 在模具制造領(lǐng)域 中,先進的 快速模具制造技術(shù)有可能改善設(shè)計和制造過程注入部分 。 快速模具制造技術(shù)基本上是由程序集 中組成, 在短短的時間里 , 以可接受的精度水平 使 我們獲取小型系列 的 塑料模具零件 。 其應(yīng)用領(lǐng)域不僅包括制作塑膠件注 ,而且 他們研制并 創(chuàng)造了最高產(chǎn)量 。 本文包括在廣泛試圖研究確定分析測試和建議 的 科研第一線 , 在產(chǎn)業(yè)層次形成從注塑模具獲取鎳 殼 核心的可能性 , 同時 用 差分模型快速成型設(shè)備取得了初步的模型 。 也將不得不說 , 無數(shù)業(yè)內(nèi)人士事前并沒有應(yīng)用任何新電鑄技術(shù) , 但 很 大程度上 ,在 快速模具的生產(chǎn)技術(shù)上使用這種試圖調(diào)查研究工作 ., 運用所有準確 , 制度化的方式方法并提出了工作 。 2注塑模具制造過程 核心是透過電進程 的 鎳殼 。 這是一個主管充滿金屬環(huán)氧樹脂 的 一核心板 塊 。 模具 (圖 1)制造 時可以 直接注射 A 型多用標本 , 確定 SO3167 標準的甲狀旁腺恩 目 的是要確定這個試樣的力學(xué)性能 和通過 常規(guī)手段收集工業(yè)材料 。 圖 1 注塑模具制造與電核心 根據(jù)這一方法研制工作 , 該階段取得核心有以下幾方面 : (一 ) CAD 系統(tǒng)預(yù)期目標 的 設(shè)計 (二 ) 快速原型設(shè)備制造模型 (頻分多路復(fù)用 )。 該材料將 被用于 ABS 塑料 (三 ) 以 以往的模式生產(chǎn)事前已經(jīng)涂了導(dǎo)電涂料 的 鎳電殼 (必須有導(dǎo) 電 ) (四 ) 從模型 中 清理殼牌 (五 ) 生產(chǎn)背面填 充著 隨著銅管與冷凍槽 流動具有 抗高溫殼牌環(huán)氧樹脂 的 核 心 注塑模具有兩個空洞 , 他們一個是電加工的核心 ,另 一 個 是直接在 機械上 移動壓板 。 因此 , 它獲得了與同一工具及同一 工藝條件同時 在空洞里 注入兩種不同 的標本 制 造 技術(shù) 。 3 電鑄殼獲?。涸O(shè)備 電鍍是一個電化學(xué)過程中的化學(xué)變化 , 當電流通過 , 它起源于電解質(zhì) 。 該電解槽是由金屬鹽 溶液 淹沒兩個電極 , 一個陽極 (鎳 )、陰極 (示范 )。 通過來自 一定強 度的 直流 電。 當電流流經(jīng)電路 , 目前在溶液 中 金屬離子轉(zhuǎn)化為原子 ,堆積于 陰極 或多或少的創(chuàng)造沉淀層。 這項工作采用 的 鍍液是由鎳、磺酸集中在 400 毫升 /公升 , 氯化鎳 (10微克 /公升 )、硼酸 (50微克 /公升 ),allbrite SLA (30立方厘米 /公升 ),703allbrite(2立方厘米 /公升 )。 這 種 合成物的 選擇主要 取決于 我們打算 的應(yīng)用類型 即注塑模具 , 即使注射了玻璃纖維 。 磺酸鎳讓我們獲得可以接受的殼 內(nèi)壓 (測試結(jié)果 , 不同工藝條件 ,不高于 50兆帕 和 2兆帕左右最佳條件 )。 不過這種程度的內(nèi)部壓力也是使用添加劑Allbrite SLA 強硝酸 脂、甲醛水溶液 產(chǎn)生 的 后果 。 這種添加劑當允許較小殼 顆粒 增加阻力 。 703allbrite 是降解水溶液以減少表面 腐 蝕 。 氯化鎳 ,盡管 內(nèi)壓有害, 增強導(dǎo)電溶液 中的 金屬均勻分布在陰極 。 硼酸作為 pH 值的緩沖 。 一旦已確定浴 ,有效驗的 參數(shù)測試 改變 不同條件過程的電流密度 (在 1至 22a/立方分米 ), 溫度 (35至 55)和 pH 值 , 部分 的 改變鍍液組成 。 4獲得硬度 在 測試期間已獲得一個非常有趣的結(jié)論 , 對不同程度硬度的 鎳殼 一直保持在相當高的穩(wěn)定價值 。 在 圖 2, 在 pH4 0.2, 攝氏 45時, 可以觀察到電流密度值為2.5 和 22 之間 。 硬度值 的范圍 從高壓 540 至 580。 如果 pH值 降 為 3.5, 氣溫下降55, 硬度值 的范圍從 高壓 520 以 上至 高壓 560 以下。由 磺酸鎳組成 的 這一特點使得測試不同于其他傳統(tǒng)業(yè)務(wù) , 觀念 是 允許經(jīng)營范圍更廣 ; 然而這種有限性的將取決于其他因素 。 例如內(nèi)應(yīng)力 , 因為其工作狀 態(tài) 可能在某些變性的 pH 值 、電流密度和溫度 下。 在另一方面 , 傳統(tǒng)的硬度介于 200-250 高壓磺酸浴 , 遠 低于在測試中獲得的。有必要 要考慮到對 于 注塑模具 , 接受 300 高壓硬度 。 其中最常見的材料就可以找到注塑模具鋼 (高壓 290), 積分硬化鋼 (高壓 520-595), casehardened 鋼 (高壓760-800)等 。 這樣可以觀察到中高幅度硬度水平 的 鎳 殼 注塑模具材料 , 有償殼牌是反對 用 低延性的環(huán)氧樹脂填充 。 因為注塑是一個內(nèi)壓控 制 進程 , 這也是為什么必須要殼厚度盡可能均勻 (以上最低值 ),避免 重大失誤 。 如 圖: 圖 2 硬度變化與電流密度 4+0.2pH值 45 5金相組織 主要是為了改良 而 分析金相結(jié)構(gòu)、電流密度、溫度值 。 樣品分析、橫向 部分 (垂直于沉積 )為 實現(xiàn)準備便捷 , 樹脂 被 方便的封裝在 含有 硝酸 , 醋酸混合物的瓶子 ,進行每隔 15, 25, 40, 50 秒 收盤后擦拭 。 為了事后在奧林匹斯金相顯微鏡碲 下 觀察 PME3-ADL 3.3/10 。 在評論文中的照片之前,有必要討論用 差分快速成型機械 制造 逐層貫通 的 熔融塑料 (ABS) 殼模具。 每一層擠出模具留下的螺紋直徑約 0.15 毫米即橫向和縱向的 中間媒介。 因此 ,在機器 的 主要 表面可以觀察到薄線標明的道路 。 這些線路將作為參考解決水平鎳重復(fù)性顯示 。 重復(fù)性模式將是一個評估注塑模具基本內(nèi)容 的 基本要素 : 表面紋理 。 該系列測試表 1 所示 : 表 1 檢驗系列 系列 pH 溫度 ( ) 電流密度 A/mm2 1 4.2 0.2 55 2.22 2 3.9 0.2 45 5.56 3 4.0 0.2 45 10.00 4 4.0 0.2 45 22.22 圖 3 顯示 第一次 蝕刻 的 系列表面樣本 。 它顯示了 頻分多路復(fù)用機的原理, 也就是說有一個良好的重復(fù)性 。 它仍無法察覺 圓形的顆粒 結(jié)構(gòu) , 在 圖 4系列 2之后 的第二蝕刻可以觀察到一條線道較前明顯減少 。 在 圖 5系列 2 和 3, 雖然這時 路徑很難 查出, 蝕刻 已 開始出現(xiàn)了一批 顆粒 結(jié)構(gòu) 。 另外 , 最黑暗的 地方 顯示 含有 合成物浴的 蝕刻過程 。 圖 3. 系列 1(150) 、蝕刻 1 圖 4. 系列 2(300), 蝕刻 2 圖 5. 系列 3(300), 蝕刻 2 這一行為表明 , 工作在低電流密度 、 高溫 下,殼 以良好的 再現(xiàn)能力 獲得粒度即適當 的應(yīng)用 。 如果 進行了平面沉積的橫向分析 , 它可以在所有的樣品和一切條件 下測試,沉淀物的 增長結(jié)構(gòu)是 由薄片組成的 (圖 6)。 雖然延展性低 ,但是 取得了高機械阻力 。 這 取決于 質(zhì)量 ,, 首 先存在 添加劑 。 因為磺酸鎳 浴 沒有添加劑 , 通常制造纖維和非層結(jié)構(gòu) 5。更正 直到近 似于 空值的潤濕劑 , 在任何情況下保持層結(jié)構(gòu)表明這種結(jié)構(gòu)的應(yīng)力消脂 (allbrite 習(xí)得 )。 在另一方面 , 據(jù)測試根據(jù)不同層結(jié)構(gòu)層厚度的計算電流密度 。 圖 6. 機橫向系列 2 (600), 蝕刻 2. 6內(nèi)壓 其中一個主要特征是殼 的 應(yīng)用像 輸入 低水平內(nèi)壓 。用 陰極張力法在不同電流密度和鍍液溫度測量系統(tǒng) 下做 不同的測試 。 鋼鐵被用來測試與控制自由和固定 (160 毫米長度 寬度 12.7 毫米 ,厚度 0.3 毫米 )。 因為沉積金屬 是唯一 允許檢測控制機械應(yīng)變 (拉伸或壓應(yīng)力 )和 計算內(nèi)壓 。 對 于 部 分鋼鐵 來說,從 彈性的角度來看 Stoney 模型 應(yīng)用 被假定鎳 底層 厚度不夠 ,表面 影響小 (3 微米 )。 在所有測試 情形 中最佳條件是內(nèi)部壓力 50和極端條件下為 2兆帕 ,為 所需的可接受值 。 最后的結(jié)論是在不同的條件和工作參數(shù) 下電鍍 浴允許無明顯變化內(nèi)壓 。 7測試的注塑模具 試驗已 在 各種代表性熱塑性材料 中 進行如聚丙烯、 鎂 、高密度聚乙烯和 PC。 分析零件的性能 , 如注射大小 、 重量、抗延性僵化 。 測試拉伸力學(xué)性能和分析光破壞性 。 這一核心進行約 500 注射量, 其余條件下經(jīng)受更多 。 一般而言 , 重大分歧都 是 未察覺樣本核心之間的行為 。 從加工腔 到 一整 套的材料 , 但是在分析 光彈性時 (圖七 )發(fā)現(xiàn)了兩種不同張標本 , 基本上是 取決于 炎熱劃轉(zhuǎn)、澆注腔的 剛度 。 這種差異說明延性 變化 較突出的部分材料 , 如聚乙烯、 六鎂。 圖 7 分析光注入標本 在所有分析化驗 中 發(fā)現(xiàn)高密度聚乙烯管 案例 是一個較低延性標本 。 所得鎳核心 , 量化 30%左右 。 在這種情況下 六鎂 值也接近 50%。 8結(jié)論 經(jīng)過連續(xù)的測試和不同的條件 下 已經(jīng)清查磺酸鎳浴已獲準使用添加劑 。 鎳殼 將獲得一些可以接受的注塑模具的機械性能 。 也就是說 , 重復(fù)性好 , 高硬度及良好的機械阻力 。 因而機械層結(jié)構(gòu)不足的部分將取代鎳殼的環(huán)氧樹脂飾面 。 核心為注塑塑造 , 允許注入可接受質(zhì)量水平中型系列塑料零件 。 附件 2:外文原文 (復(fù)印件) A technical note on the characterization of electroformed nickel shells for their application to injection molds Abstract The techniques of rapid prototyping and rapid tooling have been widely developed during the last years. In this article, electroforming as a procedure to make cores for plastics injection molds is analysed. Shells are obtained from models manufactured through rapid prototyping using the FDM system. The main objective is to analyze the mechanical features of electroformed nickel shells, studying different aspects related to their metallographic structure, hardness, internal stresses and possible failures, by relating these features to the parameters of production of the shells with an electroforming equipment. Finally a core was tested in an injection mold. Keywords: Electroplating; Electroforming; Microstructure; Nickel Article Outline 1. Introduction 2. Manufacturing process of an injection mold 3. Obtaining an electroformed shell: the equipment 4. Obtained hardness 5. Metallographic structure 6. Internal stresses 7. Test of the injection mold 8. Conclusions 1. Introduction One of the most important challenges with which modern industry comes across is to offer the consumer better products with outstanding variety and time variability (new designs). For this reason, modern industry must be more and more competitive and it has to produce with acceptable costs. There is no doubt that combining the time variable and the quality variable is not easy because they frequently condition one another; the technological advances in the productive systems are going to permit that combination to be more efficient and feasible in a way that, for example, if it is observed the evolution of the systems and techniques of plastics injection, we arrive at the conclusion that, in fact, it takes less and less time to put a new product on the market and with higher levels of quality. The manufacturing technology of rapid tooling is, in this field, one of those technological advances that makes possible the improvements in the processes of designing and manufacturing injected parts. Rapid tooling techniques are basically composed of a collection of procedures that are going to allow us to obtain a mold of plastic parts, in small or medium series, in a short period of time and with acceptable accuracy levels. Their application is not only included in the field of making plastic injected pieces , however, it is true that it is where they have developed more and where they find the highest output. This paper is included within a wider research line where it attempts to study, define, analyze, test and propose, at an industrial level, the possibility of creating cores for injection molds starting from obtaining electroformed nickel shells, taking as an initial model a prototype made in a FDM rapid prototyping equipment. It also would have to say beforehand that the electroforming technique is not something new because its applications in the industry are countless but this research work has tried to investigate to what extent and under which parameters the use of this technique in the production of rapid molds is technically feasible. All made in an accurate and systematized way of use and proposing a working method. 2. Manufacturing process of an injection mold The core is formed by a thin nickel shell that is obtained through the electroforming process, and that is filled with an epoxic resin with metallic charge during the integration in the core plate 。 This mold (Fig. 1) permits the direct manufacturing by injection of a type a multiple use specimen, as they are defined by the UNE-EN ISO 3167 standard. The purpose of this specimen is to determine the mechanical properties of a collection of materials representative industry, injected in these tools and its coMParison with the properties obtained by conventional tools. Fig. 1. Manufactured injection mold with electroformed core. The stages to obtain a core, according to the methodology researched in this work, are the following: (a) Design in CAD system of the desired object. (b) Model manufacturing in a rapid prototyping equipment (FDM system). The material used will be an ABS plastic. (c) Manufacturing of a nickel electroformed shell starting from the previous model that has been coated with a conductive paint beforehand (it must have electrical conductivity). (d) Removal of the shell from the model. (e) Production of the core by filling the back of the shell with epoxy resin resistant to high temperatures and with the refrigerating ducts made with copper tubes. The injection mold had two cavities, one of them was the electroformed core and the other was directly machined in the moving platen. Thus, it was obtained, with the same tool and in the same process conditions, to inject simultaneously two specimens in cavities manufactured with different technologies. 3. Obtaining an electroformed shell: the equipment Electrodeposition is an electrochemical process in which a chemical change has its origin within an electrolyte when passing an electric current through it. The electrolytic bath is formed by metal salts with two submerged electrodes, an anode (nickel) and a cathode (model), through which it is made to pass an intensity coming from a DC current. When the current flows through the circuit, the metal ions present in the solution are transformed into atoms that are settled on the cathode creating a more or less uniform deposit layer. The plating bath used in this work is formed by nickel sulfamate and at a concentration of 400 ml/l, nickel chloride (10 g/l), boric acid (50 g/l), Allbrite SLA (30 cc/l) and Allbrite 703 (2 cc/l). The selection of this composition is mainly due to the type of application we intend, that is to say, injection molds, even when the injection is made with fibreglass. Nickel sulfamate allows us to obtain an acceptable level of internal stresses in the shell (the tests gave results, for different process conditions, not superior to 50 MPa and for optimum conditions around 2 MPa). Nevertheless, such level of internal pressure is also a consequence of using as an additive Allbrite SLA, which is a stress reducer constituted by derivatives of toluenesulfonamide and by formaldehyde in aqueous solution. Such additive also favours the increase of the resistance of the shell when permitting a smaller grain. Allbrite 703 is an aqueous solution of biodegradable surface-acting agents that has been utilized to reduce the risk of pitting. Nickel chloride, in spite of being harmful for the internal stresses, is added to enhance the conductivity of the solution and to favour the uniformity in the metallic distribution in the cathode. The boric acid acts as a pH buffer. Once the bath has been defined, the operative parameters that have been altered for testing different conditions of the process have been the current density (between 1 and 22 A/dm2), the temperature (between 35 and 55 C) and the pH, partially modifying the bath composition. 4. Obtained hardness One of the most interesting conclusions obtained during the tests has been that the level of hardness of the different electroformed shells has remained at rather high and stable values. In Fig. 2, it can be observed the way in which for current density values between 2.5 and 22 A/dm2, the hardness values range from 540 and 580 HV, at pH 4 0.2 and with a temperature of 45 C. If the pH of the bath is reduced at 3.5 and the temperature is 55 C those values are above 520 HV and below 560 HV. This feature makes the tested bath different from other conventional ones composed by nickel sulfamate, allowing to operate with a wider range of values; nevertheless, such operativity will be limited depending on other factors, such as internal stress because its variability may condition the work at certain values of pH, current density or temperature. On the other hand, the hardness of a conventional sulfamate bath is between 200 250 HV, much lower than the one obtained in the tests. It is necessary to take into account that, for an injection mold, the hardness is acceptable starting from 300 HV. Among the most usual materials for injection molds it is possible to find steel for improvement (290 HV), steel for integral hardening (520 595 HV), casehardened steel (760 800 HV), etc., in such a way that it can be observed that the hardness levels of the nickel shells would be within the medium high range of the materials for injection molds. The objection to the low ductility of the shell is compensated in such a way with the epoxy resin filling that would follow it because this is the one responsible for holding inwardly the pressure charges of the processes of plastics injection; this is the reason why it is necessary for the shell to have a thickness as homogeneous as possible (above a minimum value) and with absence of important failures such as pitting. Fig. 2. Hardness variation with current density. pH 4 0.2, T = 45 C. 5. Metallographic structure In order to analyze the metallographic structure, the values of current density and temperature were mainly modified. The samples were analyzed in frontal section and in transversal section (perpendicular to the deposition). For achieving a convenient preparation, they were conveniently encapsulated in resin, polished and etched in different stages with a mixture of acetic acid and nitric acid. The etches are carried out at intervals of 15, 25, 40 and 50 s, after being polished again, in order to be observed afterwards in a metallographic microscope Olympus PME3-ADL 3.3/10. Before going on to comment the photographs shown in this article, it is necessary to say that the models used to manufacture the shells were made in a FDM rapid prototyping machine where the molten plastic material (ABS), that later solidifies, is settled layer by layer. In each layer, the extruder die leaves a thread approximately 0.15 mm in diameter which is compacted horizontal and vertically with the thread settled inmediately after. Thus, in the surface it can be observed thin lines that indicate the roads followed by the head of the machine. These lines are going to act as a reference to indicate the reproducibility level of the nickel settled. The reproducibility of the model is going to be a fundamental element to evaluate a basic aspect of injection molds: the surface texture. The tested series are indicated in Table 1. Table 1. Tested series Series pH Temperature (C) Current density (A/dm2) 1 4.2 0.2 55 2.22 2 3.9 0.2 45 5.56 3 4.0 0.2 45 10.00 4 4.0 0.2 45 22.22 Fig. 3 illustrates the surface of a sample of the series after the first etch. It shows the roads originated by the FDM machine, that is to say that there is a good reproducibility. It cannot be still noticed the rounded grain structure. In Fig. 4, series 2, after a second etch, it can be observed a line of the road in a way less clear than in the previous case. In Fig. 5, series 3 and 2 etch it begins to appear the rounded grain structure although it is very difficult to check the roads at this time. Besides, the most darkened areas indicate the presence of pitting by inadequate conditions of process and bath composition. Fig. 3. Series 1 (150), etch 1. Fig. 4. Series 2 (300), etch 2. Fig. 5. Series 3 (300), etch 2. This behavior indicates that, working at a low current density and a high temperature, shells with a good reproducibility of the model and with a small grain size are obtained, that is, adequate for the required application. If the analysis is carried out in a plane transversal to the deposition, it can be tested in all the samples and for all the conditions that the growth structure of the deposit is laminar (Fig. 6), what is very satisfactory to obtain a high mechanical resistance although at the expense of a low ductibility. This quality is due, above all, to the presence of the additives used because a nickel sulfamate bath without additives normally creates a fibrous and non-laminar structure. The modification until a nearly null value of the wetting agent gave as a result that the laminar structure was maintained in any case, that matter demonstrated that the determinant for such structure was the stress reducer (Allbrite SLA). On the other hand, it was also tested that the laminar structure varies according to the thickness of the layer in terms of the current density. Fig. 6. Plane transversal of series 2 (600), etch 2. 6. Internal stresses One of the main characteristic that a shell should have for its application like an insert is to have a low level of internal stresses. Different tests at different bath temperatures and current densities were done and a measure system rested on cathode flexural tensiometer method was used. A steel testing control was used with a side fixed and the other free (160 mm length, 12.7 mm width and thickness 0.3 mm). Because the metallic deposition is only in one side the testing control has a mechanical strain (tensile or compressive stress) that allows to calculate the internal stresses. Stoney model was applied and was supposed that nickel substratum thickness is enough small (3 m) to influence, in an elastic point of view, to the strained steel part. In all the tested cases the most value of internal stress was under 50 MPa for extreme conditions and 2 MPa for optimal conditions, an acceptable value for the required application. The conclusion is that the electrolitic bath allows to work at dif

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論