




已閱讀5頁,還剩30頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1 附錄 英文文獻翻譯 附錄 A 帶式輸送機技術(shù)的最新發(fā)展 M. A. AlspaughOverland Conveyor Co., Inc. MINExpo 2004 拉斯維加斯 , 內(nèi)華達州,美國 , 2004.9.27 摘要 粒狀材料運輸要求帶式輸送機具有更遠的輸送距離、更復雜的輸送路線和更大的輸送量。為了適應(yīng)社會的發(fā)展,輸送機需要在系統(tǒng)設(shè)計、系統(tǒng)分析、數(shù)值仿真領(lǐng)域向更高層次發(fā)展。 傳統(tǒng)水平曲線和現(xiàn)代中間驅(qū)動的應(yīng)用改變和擴大了帶式輸送機發(fā)展的可能性。本 文回顧了為保證輸送機的可靠性和可用性而運用數(shù)字工具的一些復雜帶式輸送機。 前言 雖然 這篇文章的 標題表明在皮帶輸送機技術(shù) 中 將提出 “ 新 ” 發(fā)展, 但是提到的大多 思想和方法都已存在很長時間了 。 我們 不 懷疑被提出 一些部件 或想法將是“ 新 ” 的對 你們 大部分人來說 。 所謂的“新”就是利用成熟的技術(shù)和部件組成特別的、復雜的系統(tǒng); “新”就 是 利用 系統(tǒng)設(shè)計工具和方法 , 匯集 一些部件組成 獨特的輸送機系統(tǒng),并 解決 大量粒狀原料的裝卸問題;“新”就是 在第一次系統(tǒng)試驗 (委任 )之前 利用日益成熟的計算機技術(shù)進行 準確節(jié)能計算機模擬。 同樣,本文的重 點是特定復雜系統(tǒng)設(shè)計及滿足長距離輸送的要求。 這四個具體課題將覆蓋: 1、 托輥阻力 2 2、 節(jié)能 3、 動力分散 4、 分析與仿真 節(jié)能 減小設(shè)備 整體電力消費是所有項目的一個重要方面,皮帶輸送機是 也不例外 。 雖然與其他運輸方法比較皮帶輸送機總是運輸大噸位高效率的手段, 但是減少帶式輸送機的功率消耗的方法還是很多的 。 皮帶輸送機的主要 阻力 組成 部分有: a. 托輥阻力 b. 托輥與皮帶的摩擦力 c. 材料或輸送帶彎曲下垂引起的阻力 這些阻力加上一些混雜阻力組成輸送材料所需的力。 1 在一臺輸送長度 400 米的典型短距離輸送機中 ,力可以分為如圖 1 所示 的幾個部分,圖中可以看出提升力所占比例最大,而阻力還是占絕大部分。 3 圖 1 在高傾斜輸送帶中如礦用露天傾斜輸送帶,所受力可分解為圖 2 所示的幾個部分,其中提升力仍占巨大比例。由于重力是無法避免的,因此沒有好的方法減少傾斜式輸送機所受力。 圖 2 4 但是在長距離陸上輸送機中,所受力更趨向圖 3 所示的幾個部分,不難看出摩擦力幾乎是所受力的全部。這種情況下考慮主要受力才是最重要的。 圖 3 力量演算具體是超出本文的范圍之外,但是 值得一提的是 ,在過去幾年對所有四個區(qū)域橡膠凹進、對準線和材料或者傳送帶彎曲 等方面的重要研究都在進行 。 并且,雖然 在 處理每特定區(qū)域 時大家有不同意見 ,通常對整體項目經(jīng)濟 是必要和重要的 是 被大家 被接受 的。 在 2004 個 SME 年會上, MAN Takraf的 Walter Kung 介紹了題為“ Henderson粗糙礦石輸送系統(tǒng) 回顧組裝、起動和操作” 2。 這個項目在 1999 年 12 月被實施并且包括一個 24 公里 (3 飛行 )陸上轉(zhuǎn)達的系統(tǒng)替換地下礦碾碎路軌貨車使用系統(tǒng)。 5 圖 4 PC2 到 PC3 調(diào)動站 最長的傳動機在這個系統(tǒng) (PC2)是 16.28 公里 長與 475m 升距。最重要的系統(tǒng)事實是提供的功率 (4000 千瓦在 1783 mtph 和 4.6 m/s)的 50% 被要求用來轉(zhuǎn)動一條空載的帶子,因此輸送系統(tǒng)的效率是很重要的。需密切注意托輥、傳送帶蓋子橡膠和對準線。用文件說明有關(guān)的效率的差別是的一種方法, 使用 相等的摩擦系數(shù) f的22101 標準定義作為比較主要抵抗的總數(shù)的另一種方法。過去,象這樣典型輸送裝置的綜合設(shè)計噪音系數(shù)大約是 0.016f。 MAN Takraf 正估計他們對力的敏感達到到0.011 的 f,超過 30%的削減。這在減少設(shè)備建造成本上做出了重大貢獻。 通過六次的實際動態(tài)測量顯示價值是 0.0075,甚至比期望值低 30%。 Kung 先生強調(diào)這將在僅僅用電費用一項上每年減少費用 10 萬美元。 線路優(yōu)化 圖 5 中國天津 6 水平適應(yīng)性 當然最高效率的材料運輸方式是從一點到下一點的直線輸送。 但是,由于自然和認為障礙的存在,我們在長距離輸送過程中直接直線輸送的可能性越來越小。第一臺水平彎曲輸送機已在很多年前安裝使用,但它今天似乎關(guān)于安裝的每臺陸上傳動機在方向至少有一個水平變化。并且今天的技術(shù)允許設(shè)計師相對地容易地調(diào)整這些曲線。 圖 5 和圖 6 顯示的是把煤從蘊 藏地運輸?shù)街袊旖蚋劭诠芾硖幍年懮陷斔脱b置。這套運輸機由 E.J. ODonovan & Associates 設(shè)計,由 Continental Conveyor Ltd of Australia 公司承建,長達 9千米的輸送距離 4臺 1500 千萬電機驅(qū)動運輸能力達 6000 mtph 。 圖 6 天津輸送線平面圖 Wyodak 礦位于美國懷俄明州粉河流域,是記錄中最古老的連續(xù)經(jīng)營的煤礦,自1923 年運營至今。它一般運用坡面 (圖 7)從新的礦坑到裝置 756m (2,482 ft)與 700m (2,300 ft)水平的半徑。 這表明由于水平輪的應(yīng)用輸送機不需要設(shè)計太長 3。 7 圖 7 煤礦 隧道式 如通過沒有水平曲線線路,另一項產(chǎn)業(yè),隧道挖掘,就不能使用帶式輸送機了。 隧道就想象廢水和運輸那樣的基礎(chǔ)設(shè)施在全世界有。 移動隧道糞肥的最有效率的方法通過把推進的輸送裝置和隧道機器的后部連結(jié)起來。但是這些隧道極少是直的。 這里有一個例子,西班牙 10.9m 直徑隧道的在巴塞羅那之下作為地鐵 (火車 )引伸項目一部分。大陸輸送機機有限公司安裝了前 4.7km傳動機如圖 8 和 9 所顯示和最近接受合同安裝第二臺 8.39 公里輸送機。 8 圖 8- 巴塞羅那隧道平面圖 圖 9- 隧道內(nèi)部 另一個例子, 肯珀建設(shè)邊境時,建設(shè)一個直徑 3.6 米長 6.18 公里的隧道作為大都市圣路易斯的下水道區(qū)。鮑姆加特納隧道 (圖 10)將裝有 600 毫米寬的用 4 個中間運動用帶子系住的 6.1 公里輸送裝置。 9 圖 10- 鮑姆加特納隧道平面圖 管狀輸送裝置 如果常規(guī)輸送機不能滿足必須的輸送要求,帶式輸送機的一種管狀輸送機會是不錯的選擇。 圖 11- 管狀輸送裝置 它最簡單的描述,管狀輸送機就是由管狀橡膠管和空轉(zhuǎn)輥組成。這種設(shè)計具有其他傳送方式的優(yōu)點,更有自己 的特點。 托輥可以在各個方向傳力允許更復雜的曲線輸送。這些曲線可以是水平或垂直或混合形式。這樣的輸送機輸送帶與托輥之間的重力和摩擦力保證原料在輸送管道內(nèi)。 10 圖 -12 管狀輸送機的另一個好處可以輸送粉狀原料并且可以減少溢出浪費,因為材料是在管道內(nèi)部。一個典型的例子是環(huán)境效益和適應(yīng)性特好的美國猶他州地平線礦(圖12)。這個長 3.38 公里的管狀輸送機由 ThyssenKrupp Robins 安裝通過一個國家森林并且橫斷了 22 個水平段和 45 個垂直段。 Metso 繩索輸送機 另一種由常規(guī)衍變來的是 Mesto 繩索輸送機( MRC),通常以纜繩傳送帶著名。這個產(chǎn)品以長途輸送著名,在距澳大利亞 30.4 公里的沃斯利鋁土礦上應(yīng)用的輸送帶是最長的單個飛行輸送機。在鋼繩輸送機上,驅(qū)動裝置和運載媒介是分離的。 圖 13 - MRC-平直的部分 11 這種驅(qū)動與輸送裝置的分離允許輸送有小半徑的水平彎曲,這種設(shè)計優(yōu)于根 距張緊力和地勢的傳統(tǒng)設(shè)計。 圖 14 MRC 與常規(guī)輸送機水平曲線的不同 圖 15- 位于加拿大 Line Creek 的 MRC 圖 15 顯示的是位于加拿大 Line Creek 河畔的一條長 10.4 公里水平半徑 430 米的纜繩輸送帶 立式輸送裝置 有時材料需要被提升或下降而常規(guī)輸送機被限制在 16 18 度附近的傾斜角度內(nèi)。但是帶式輸送機的非傳統(tǒng)衍變不管是在增加角度還是平直方面都是相當成功的。 大角度輸送機 12 第一臺大角度輸送機由 Continental Conveyor & Equipment Co.公司生產(chǎn),非常利用常規(guī)輸送機零部件(圖 16)構(gòu)成。當原料在兩條帶子之間輸送時,被稱為三明治輸送裝置。 圖 -16 Continental 公司的第 100 套大傾角輸送裝置采用獨特的可平移式設(shè)計,作為Mexican de Canenea 的堆過濾墊(圖 17)。 圖 -17 垂直式輸送裝置 13 第二種立式輸送裝置展現(xiàn)的是一種非常規(guī)的帶式裝置,它可以實現(xiàn)垂直輸送(圖 18)。 這種 Mesto 垂直輸送機, 2001 年由 Frontier Kemper 安裝在白縣煤礦 Pattiki 2礦(圖 19),將煤由 273 米深的礦井輸出并達到 1,818 mtph 的輸送能力。 圖 -18 圖 -19 礦 動力分散 14 在最近過去的一段時間里,一種最有趣的發(fā)展是電力沿輸送道路的分配。看到輸送機驅(qū)動裝置安裝在收尾末端,讓尾端驅(qū)動完成 輸送帶的拉緊輸送工作。但是現(xiàn)在的發(fā)展觀念是把驅(qū)動安裝在任何需要的位置。 在帶式輸送機上多個位置安裝動力源的想法已經(jīng)存在很長一段時間了。第一次應(yīng)用是 1974 年安裝在美國 Kaiser 煤礦。緊接著是在地下煤礦中得到應(yīng)用,而且長臂開采法也越來越體現(xiàn)它的優(yōu)越性。采礦設(shè)備的效率和能力也得到巨大改善。礦工們也開始尋找大的礦區(qū)從而減少移動大型采礦設(shè)備的次數(shù)及時間。礦井寬度和礦井分格長度都得到增加。 當?shù)V井分格長度增加后,輸送問題開始出現(xiàn)。接近 4-5 千米的輸送長度所需要的電力和輸送帶的強度比以前地下煤礦需要的大很多。問 題是大號的高電力驅(qū)動裝置安裝及移動困難。雖然膠帶技術(shù)能夠滿足膠帶所需強度要求,它意味著需要比鋼鐵更重要的強度及加硫處理。由于長臂開采法的盤區(qū)傳動機經(jīng)常推進和后退,礦工需要經(jīng)常增加或取消滾筒的正傳與逆轉(zhuǎn)。而且硫化結(jié)合需要長期維護以保證強度,因而失去的產(chǎn)品生產(chǎn)時間在一個完全盤區(qū)中是很嚴重的?,F(xiàn)在需要超過風險,并且中間驅(qū)動的應(yīng)用限制了輸送帶的伸長及張緊這樣就允許纖維膠帶在長距離輸送機中應(yīng)用。 現(xiàn)今,中間驅(qū)動技術(shù)被很好的接受并越來越廣泛的應(yīng)用于地下煤礦中。世界范圍內(nèi)的許多礦把這項技術(shù)整合到現(xiàn)在和未來礦業(yè)計劃當中來 增加他們的整體采礦效率和效益 6。 表 20 所示的張緊圖顯示了中間驅(qū)動的重大好處。這種平面前驅(qū)的輸送機有簡單的皮帶張力分布如黑色線條所示。雖然平均皮帶張力在每個周期期間只約為最大值的 40%,但必須圍繞最大估量值附近。黑色線條的急劇回落表示頂頭滑輪要求的總扭矩和力量來啟動輸送機。 將受力分解到兩個地點(紅線),當總功率基本相同的情況下,皮帶張力差不多減少 40%。因此更小的輸送帶和更小的電源組可以得到運用。為了進一步擴展這種方式,增加第二中間驅(qū)動(綠線),皮帶峰頂張力進一步下降。 隧道產(chǎn)業(yè)也迅速采用這種技術(shù)并且 把這項技術(shù)提高到更好的水平,更復雜更先 15 進。但挖隧道最需要的是水平曲線的進步。 通過中間驅(qū)動(圖 21)的一種應(yīng)用例如 Baumgartner 隧道如前圖 10 所描述,皮帶張緊力可以通過在重要的地點安裝戰(zhàn)略驅(qū)動來控制,從而實現(xiàn)輸送帶的小曲線換向。 圖 20 圖 -21 在圖 22 中,綠色投影區(qū)域代表彎曲結(jié)構(gòu)的地點。藍色線條代表輸送帶運載面, 16 粉紅色線條代表輸送帶返回面??梢园l(fā)現(xiàn)在彎曲半徑最小 750 米時輸送帶運載面和返回面所受張緊力均達到最小。 圖 -22 盡管到目前為止,這項技術(shù)陸上輸送機中 沒有廣泛的應(yīng)用,一些傾向于水平曲線的技術(shù)卻得到發(fā)展。圖 23 顯示了南美洲的一條長 8.5 千米硬巖層輸送帶,它需要4 個中間驅(qū)動來實現(xiàn) 4 段 2000 米半徑的曲線轉(zhuǎn)向。 圖 -23 平面圖 圖 24 顯示在彎曲段有與沒有驅(qū)動時輸送帶的張緊力比較。 分散驅(qū)動的優(yōu)點在 MRC 纜繩輸送帶中也得到應(yīng)用。然而張緊運載的繩索有別于 17 負載傳送帶,安裝中間驅(qū)動更加容易,輸送的原料不用離開運載輸送帶的表面。張緊運載的繩索與輸送帶分開足夠的距離,便利在安裝中間驅(qū)動后繼續(xù)工作。 (圖 25). 圖 -24 張緊曲線 圖 -25 18 引用 1散裝材料的帶式輸送機 ,輸送設(shè)備制造商協(xié)會 ,第五版 ,1997 年版 2宮 ,沃爾特 ,”亨德森粗礦石輸送系統(tǒng)的調(diào)試 ,啟動 ,和操作” ,由帶式輸送機 5散裝材料處理 ,學會采礦、冶金和探索 ,Inc .,2004 年 3Goodnough Ryne” ,在 Wyodak 礦的礦井內(nèi)輸送 -吉列 ,懷俄明” ,由帶式輸送機5 散裝材料處理 ,學會采礦、冶金和探索 ,Inc .,2004 年 4Neubecker,我?!?,一個陸上管道輸送機 22 水平和 45 垂直曲線連接煤礦鐵路負荷” ,散裝固體處理 ,17 卷 (1997 年 ),4 號 5Crewdson,史蒂夫 ,“垂直皮帶系統(tǒng) Pattiki 2 礦” ,由帶式輸送機 5 散裝材料處理 ,學會采礦、冶金和探索 ,Inc .,2004 年。 6Alspaugh,馬克 ,“中間驅(qū)動帶式輸送機技術(shù)的發(fā)展” ,散裝固體處理” ,23 卷(2003)3 號 7奧多 ,E.J.,“所有輸送機動態(tài)分析 -效益” ,傳送帶工程煤炭和礦產(chǎn)開采行業(yè) ,學會采礦、冶金和探索 ,Inc .,1993 年。 8Dewicki Grzegorz” ,散裝材料處理和處理 ,數(shù)值模擬技術(shù)和顆粒材料” ,散裝固體處理” ,23 卷 (2003)2 號 19 附錄 B Latest Developments in Belt Conveyor Technology M. A. Alspaugh Overland Conveyor Co., Inc. Presented at MINExpo 2004Las Vegas, NV, USA September 27, 2004 Abstract Bulk material transportation requirements have continued to press the belt conveyor industry to carry higher tonnages over longer distances and more diverse routes. In order keep up, significant technology advances have been required in the field of system design, analysis and numerical simulation. The application of traditional components in non-traditional applications requiring horizontal curves and intermediate drives have changed and expanded belt conveyor possibilities. Examples of complex conveying applications along with the numerical tools required to insure reliability and availability will be reviewed. Introduction Although the title of this presentation indicates “new” developments in belt conveyor technology will be presented, most of the ideas and methods offered here have been around for some time. We doubt any single piece of equipment or idea presented will be “new” to many of you. What is “new” are the significant and complex systems being built with mostly mature components. What is also “new” are the system design tools and methods used to put these components together into unique conveyance systems designed to solve ever expanding bulk material handling needs. And what is also “new” is the increasing ability to produce accurate Energy Efficiency computer simulations of system performance prior to the first system test (commissioning). As such, the main focus of this presentation will be the latest developments in complex system design essential to properly engineer and optimize todays long distance conveyance requirements. The four specific topics covered will be: 5、 Idler Resistance 6、 Energy Efficiency 7、 Distributed Power 20 8、 Analysis and Simulation Energy Efficiency Minimizing overall power consumption is a critical aspect of any project and belt conveyors are no different. Although belt conveyors have always been an efficient means of transporting large tonnages as compared to other transport methods, there are still various methods to reduce power requirements on overland conveyors. The main resistances of a belt conveyor are made up of: d. Idler Resistance e. Rubber indentation due to idler support f. Material/Belt flexure due to sag being idlers g. Alignment These resistances plus miscellaneous secondary resistances and forces to over come gravity (lift) make up the required power to move the material.1 In a typical in-plant conveyor of 400m length, power might be broken into its components as per Figure 1 with lift making up the largest single component but all friction forces making up the majority. 21 Figure 1 In a high incline conveyor such as an underground mine slope belt, power might be broken down as per Figure 2, with lift contributing a huge majority. Since there is no way to reduce gravity forces, there are no means to significantly reduce power on high incline belts. Figure 2 But in a long overland conveyor, power components will look much more like Figure 22 3, with frictional components making up almost all the power. In this case, attention to the main resistances is essential. Figure 3 The specifics of power calculation is beyond the scope of this paper but it is important to note that significant research has been done on all four areas of idlers, rubber indentation, alignment and material/belt flexure over the last few years. And although not everyone is in agreement as to how to handle each specific area, it is generally well accepted that attention to these main resistances is necessary and important to overall project economics. At the 2004 SME annual meeting, Walter Kung of MAN Takraf presented a paper titled “The Henderson Coarse Ore Conveying System- A Review of Commissioning, Start-up and Operation”2. This project was commissioned in December 1999 and consisted of a 24 km (3 flight) overland conveying system to replace the underground mine to mill rail haulage system. Figure 4- Henderson PC2 to PC3 Transfer House 23 The longest conveyor in this system (PC2) was 16.28 km in length with 475m of lift. The most important system fact was that 50% of the operating power (4000 kW at 1783 mtph and 4.6 m/s) was required to turn an empty belt therefore power efficiency was critical. Very close attention was focused on the idlers, belt cover rubber and alignment. One way to document relative differences in efficiency is to use the DIN 22101 standard definition of “equivalent friction factor- f” as a way to compare the total of the main resistances. In the past, a typical DIN fused for design of a conveyor like this might be around 0.016. MAN Takraf was estimating their attention to power would allow them to realize an f of 0.011, a reduction of over 30%. This reduction contributed a significant saving in capital cost of the equipment. The actual measured results over 6 operating shifts after commissioning showed the value to be 0.0075, or even 30% lower than expected. Mr. Kung stated this reduction from expected to result in an additional US$100, 000 savings per year in electricity costs alone. Route Optimization Figure 5- Tiangin China Horizontal Adaptability Of course the most efficient way to transport material from one point to the next is as directly as possible. But as we continue to transport longer distances by conveyor, the possibility of conveying in a straight line is less and less likely as many natural and man-made obstacles exist. The first horizontally curved conveyors were installed many years ago, but today it seems just about every overland conveyor being installed has at least one horizontal change in direction. And todays technology allows designers to accommodate these curves relatively easily. Figures 5 and 6 shows an overland conveyor transporting coal from the stockpile to 24 the shiploader at the Tianjin China Port Authority installed this year. Designed by E.J. ODonovan & Associates and built by Continental Conveyor Ltd of Australia, this 9 km overland carries 6000 mtph with 4x1500 kW drives installed. Figure 6- Tiangin China Plan View The Wyodak Mine, located in the Powder River Basin of Wyoming, USA, is the oldest continuously operating coal mine in the US having recorded annual production since 1923. It currently utilizes an overland (Figure 7) from the new pit to the plant 756m long (2,482 ft) with a 700m (2,300 ft) horizontal radius. This proves a conveyor does not need to be extremely long to benefit from a horizontal turn. 3 Figure 7- Wyodak Coal Tunneling 25 Another industry that would not be able to use belt conveyors without the ability to negotiate horizontal curves is construction tunneling. Tunnels are being bore around the world for infrastructure such as waste water and transportation. The most efficient method of removing tunnel muck is by connecting an advancing conveyor to the tail of the tunnel boring machine. But these tunnels are seldom if ever straight. One example in Spain is the development of a 10.9m diameter tunnel under Barcelona as part of the Metro (Train) Extension Project. Continental Conveyor Ltd. installed the first 4.7km conveyor as shown in Figures 8 and 9 and has recently received the contract to install the second 8.39 km conveyor. Figure 8- Barcelona Tunnel Plan View Figure 9- Inside Tunnel 26 In another example, Frontier Kemper Construction is currently starting to bore 6.18 km (20,275 ft) of 3.6m (12 foot) diameter tunnel for the Metropolitan St. Louis (Missouri) Sewer District. The Baumgartner tunnel (Figure 10) will be equipped with a 6.1 km conveyor of 600mm wide belting with 4 intermediate drives. Figure 10- Baumgartner Tunnel Plan View Pipe Conveyors And if conventional conveyors cannot negotiate the required radii, other variations of belt conveyor such as the Pipe Conveyor might be used. Figure 11- Pipe Conveyor In its simplest description, a pipe conveyor consists of a rubber conveyor belt rolled into a pipe shape with idler rolls. This fundamental design causes the transported material to be totaled enclosed by the belt which directly creates all the advantages. The idlers constrain the belt on all sides allowing much tighter curves to be negotiated in any direction. The curves can be horizontal, vertical or combinations of both. A 27 conventional conveyor has only gravity and friction between the belt and idlers to keep it within the conveyance path. Figure 12 Another benefit of pipe conveyor is dust and/or spillage can be reduced because the material is completely enclosed. A classic example where both environment and adaptability to path were particularly applicable was at the Skyline Mine in UT, USA (Figure 12). This 3.38 km (11,088 ft) Pipe Conveyor was installed by ThyssenKrupp Robins through a national forest and traversed 22 horizontal and 45 vertical curves.4 Metso Rope Conveyor Another variation from conventional is the Metso Rope Conveyor (MRC) more commonly known as Cable Belt. This product is known for long distance conveying and it claims the longest single flight conveyor in the world at Worsley Alumina in Australia at 30.4 km. With Cable Belt, the driving tensions (ropes) and the carrying medium (belt) are separated (Figure 13). Figure 13- MRC- Straight Section This separation of the tension carrying member allows positive tracking of the ropes 28 (Figure 14) which allow very small radius horizontal curves to be adopted that defeat the traditional design parameters based on tension and topography. Figure 14 MRC vs. Conventional Conveyor in Horizontal Curve Figure 15- MRC at Line Creek, Canada Figure 15 shows a 10.4 km Cable Belt with a 430m horizontal radius at Line Creek in Canada. Vertical Adaptability Sometimes material needs to be raised or lowered and the conventional conveyor is limited to incline angles around 16-18 degrees. But again non-traditional variations of belt conveyors have been quite successful at increased angles as well as straight up. High Angle Conveyor (HAC.) The first example manufactured by Continental Conveyor & Equipment Co. uses conventional conveyor components in a non-conventional way (Figure 16). The concept is known as a sandwich conveyor as the material is carried between two belts. 29 Figure 16 Continentals 100th installation of the HAC was a unique shiftable installation at Mexican de Caneneas heap leach pad (Figure 17). Figure 17 Pocketlift. The second example shows a non-traditional belt construction which can be used to convey vertically (Figure 18). This Metso Pocketlift. belt was installed by Frontier Kemper Constructors at the Pattiki 2 Mine of White County Coal in 2001 (Figure 19). It currently lifts 1,818 mtph of run-of-mine coal up 273 m (895 ft). 5 30 Figure 18 Figure 19- Pattiki 2 Mine Distributed Power One of the most interesting developments in technology in the recent past has been the distribution of power along the conveyor path. Is has not been uncommon to see drives positioned at the head and tail ends of long conveyors and let the tail drive do the work of pulling the belt back along the return run of the conveyor. But now that idea has expanded to allow designers to position drive power wherever it is most needed. The idea of distributing power in multiple locations on a belt conveyor has been around for a long time. The first application in the USA was installed at Kaiser Coal in 31 1974. It was shortly thereafter that underground coal mining began consolidating and longwall mines began to realize tremendous growth in output. Mining equipment efficiencies and capabilities were improving dramatically. Miners were looking for ways to increase the size of mining blocks in order to decrease the percentage of idle time needed to move the large mining equipment from block to block. Face widths and panel lengths were increasing. When panel lengths were increased, conveyance concerns began to appear. The power and belt strengths needed for these lengths approaching 4 -5 km were much larger than had ever been used underground before. Problems included the large size of high power drives not to mention being able to handle and move them around. And, although belting technology could handle the increased strength requirements, it meant moving to steel reinforced belting that was much heavier and harder to handle and more importantly, required vulcanized splicing. Since longwall panel conveyors are constantly advancing and retreating (getting longer and shorter), miners are always adding or removing rolls of belting from the system. Moreover, since vulcanized splicing takes several times longer to facilitate, lost production time due to belt moves over the course of a complete panel during development and mining would be extreme. Now the need surpassed the risk and the application of intermediate drives to limit belt tensions and allow the use of fabric belting on long center applications was actively pursued. Today, intermediate drive technology is very well accepted and widely used in underground coal mining. Many mines around the world have incorporated it into their current and future mine plans to increase the efficiency of their overall mining operations. 6 The tension diagram in Figure 20 shows the simple principal and most significant benefit of intermediate belt conveyor drives. This flat, head driven conveyor has a simple belt tension distribution as shown in black. Although the average belt tension during each cycle is only about 40% of the peak value, all the belting must be sized for the maximum. The large drop in the black line at the head pulley represents the total torque or power required to run the conveyor. By splitting the power into two locations (red line), the maximum belt tension is reduced by almost 40% while the total power requirement remains virtually the same. A much smaller belt can be used and smaller individual power units can be used. To extend the example further, a second intermediate drive is added (green line) and the peak belt tension drops further. The tunneling industry was also quick to adopt this technology and even take it to higher levels of complexity and sophistication. But the main need in tunneling was the necessity of using very tight horizontal curves. By applying intermediate drives (Figure 21) to an application such as the Baumgartner Tunnel as described in Figure 10 above, belt tensions can be controlled in 32 the horizontal curves by strategically placing drives in critical locations thereby allowing the belt to turn small curves. Figure 20 Figure 21 In Figure 22, the hatched areas in green represent the location of curved structure. The blue line represents carry side belt tensions and the pink line represents return side belt tensions. Notice belt tensions in both the carry and return sides are minimized in the curves, particularly the tightest 750m radius. 33 Figure
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國鍍鋅波形梁護欄市場分析及競爭策略研究報告
- 2025至2030年中國金剛石產(chǎn)品市場分析及競爭策略研究報告
- 2025至2030年中國西服外包裝袋市場分析及競爭策略研究報告
- 2025至2030年中國肝絡(luò)欣丸市場分析及競爭策略研究報告
- 2025至2030年中國竹編果盤市場分析及競爭策略研究報告
- 2025至2030年中國電腦繡花機齒輪市場分析及競爭策略研究報告
- 2025至2030年中國爽足軟膏市場分析及競爭策略研究報告
- 2025至2030年中國活動腳手市場分析及競爭策略研究報告
- 2025至2030年中國槽型支架市場分析及競爭策略研究報告
- 2025至2030年中國無線紅外現(xiàn)場報警探測器市場分析及競爭策略研究報告
- 拉薩市墨竹工卡縣思金拉措小學-2025年春季英語教研組工作總結(jié)-一路求索不停歇【課件】
- 山東省菏澤市2023?2024學年高一下學期7月期末考試 數(shù)學試題(含解析)
- (三級)人工智能訓練師職業(yè)技能鑒定理論考試題(附答案)
- 2025杭州市臨安區(qū)事業(yè)單位招聘80人考前自測高頻考點模擬試題附答案詳解(鞏固)
- 2025年北京二十中中考英語零模試卷
- 護理服務(wù)質(zhì)量提升路徑與實踐
- 糞肥還田協(xié)議書范本
- 商務(wù)數(shù)據(jù)分析-形考作業(yè)4(第5章)-國開(ZJ)-參考資料
- 有機合成與推斷綜合大題(解析版)
- 智能客服語音識別技術(shù)在醫(yī)療行業(yè)的應(yīng)用現(xiàn)狀與發(fā)展報告
- 工勤技師考試試題及答案
評論
0/150
提交評論