



全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
_1.3.2球的體積和表面積(1)設(shè)球的半徑為R,將半徑OAn等分,過這些分點(diǎn)作平面把半球切割成n 層,每一層都是近似于圓柱形狀的“小圓片”,這些“小圓片”的體積之和就是半球的體積。由于“小圓片”近似于圓柱形狀,所以它的體積也近似于圓柱的體積。它的高就是“小圓片”的厚度,底面就是“小圓片”的下底面。由勾股定理可得第i層(由下向上數(shù))“小圓片”的下底面半徑:,(i1,2,3,n)第i層“小圓片”的體積為:V,(i1,2,3,n)半球的體積:V半徑V1V2Vn1(1)(1)1n(注:)n)當(dāng)所分的層數(shù)不斷增加,也就是說,當(dāng)n不斷變大時(shí),式越來越接近于半球的體積,如果n無限變大,就能由式推出半徑的體積。事實(shí)上,n增大,就越來越小,當(dāng)n無限大時(shí),趨向于0,這時(shí),有V半徑,所以,半徑為R的球的體積為:V1.3.2球的體積和表面積(2)球的表面積推導(dǎo)方法(設(shè)球的半徑為R,利用球的體積公式推導(dǎo)類似方法)(1)分割。把球O的表面分成n個(gè)“小球面片”,設(shè)它們的表面積分別是S1,S2,Sn,那么球的表面積為:SS1S2Sn把球心O和每一個(gè)“小球面片”的頂點(diǎn)連接起來,整個(gè)球體被分成n個(gè)以“小球面片”為底,球心為頂點(diǎn)的“小錐體”。例如,球心與第i個(gè)“小球面片”頂點(diǎn)相連后就得到一個(gè)以點(diǎn)O為頂點(diǎn),以第i個(gè)“小球面片”為底面的“小錐體”。這樣“小錐體”的底面是球面的一部分,底面是“曲”的。如果每一個(gè)“小球面片”都非常小,那么“小錐體”的底面幾乎是“平”的,(好象地球一樣),這時(shí),每一個(gè)“小錐體”就近似于棱錐,它們的高近似于球的半徑R。(2)求近似和。設(shè)n個(gè)“小錐體”的體積分別為V1,V2,Vn那么球的體積為:VV1V2Vn由于“小錐體”近似于棱錐,所以我們用相應(yīng)棱錐的體積作為“小錐體”體積的近似值。第i個(gè)“小錐體”對(duì)應(yīng)的棱錐以點(diǎn)O為頂點(diǎn),以點(diǎn)O與第i個(gè)“小球面片”頂點(diǎn)的連線為棱。設(shè)它的高為hi,底面面積為Si,于是,它的體積為:Vihi Si,(i1,2,,n)這樣就有:Vihi Si,(i1,2,,n)V(h1 S1h2 S2 hn Sn)(3)轉(zhuǎn)化為球的表面積。分割得越細(xì)密,也就是每一個(gè)“小球面片”越小,“小錐體”就越接近于棱錐,如果分割無限加細(xì),每一個(gè)“小球面片”都無限變小,那么hi (i1,2,,n)就趨向于R,Si就趨向于 Si,于是,由可得:VRS又V,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 森林公園施工合同
- 汽車維修勞動(dòng)合同
- 磋商與訂立合同三
- 月嫂居間合同協(xié)議書
- 2燕子(教學(xué)設(shè)計(jì))-2023-2024學(xué)年統(tǒng)編版語文三年級(jí)下冊(cè)
- 山東管理學(xué)院《有機(jī)化學(xué)G》2023-2024學(xué)年第二學(xué)期期末試卷
- 福建技術(shù)師范學(xué)院《推拿及運(yùn)動(dòng)損傷治療》2023-2024學(xué)年第二學(xué)期期末試卷
- 韶關(guān)學(xué)院《化工設(shè)備基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 貴陽學(xué)院《基礎(chǔ)化學(xué)實(shí)驗(yàn)(4)》2023-2024學(xué)年第二學(xué)期期末試卷
- 黃淮學(xué)院《中學(xué)物理實(shí)驗(yàn)訓(xùn)練與研究》2023-2024學(xué)年第二學(xué)期期末試卷
- 《電力系統(tǒng)規(guī)劃》第1章
- 高二歷史【開學(xué)第一課】2022年高中秋季開學(xué)指南之愛上歷史課
- 人間生活(外國部分)
- 2023年TOFD檢測通用工藝規(guī)程參考版
- 物業(yè)保潔團(tuán)隊(duì)建設(shè)與管理
- 紙與我們的生活
- 國家中長期科技發(fā)展規(guī)劃綱要2021-2035
- 施工班組考核評(píng)分表
- 水泥攪拌樁施工記錄表
- 脫碳塔CO2脫氣塔設(shè)計(jì)計(jì)算
- 《駱駝祥子》通讀指導(dǎo)手冊(cè)
評(píng)論
0/150
提交評(píng)論