已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
點(diǎn)與圓、直線與圓以及圓與圓的位置關(guān)系 一、教學(xué)目標(biāo)(一)知識(shí)教學(xué)點(diǎn)使學(xué)生掌握點(diǎn)與圓、直線與圓以及圓與圓的位置關(guān)系;過圓上一點(diǎn)的圓的切線方程,判斷直線與圓相交、相切、相離的代數(shù)方法與幾何方法;兩圓位置關(guān)系的幾何特征和代數(shù)特征(二)能力訓(xùn)練點(diǎn)通過點(diǎn)與圓、直線與圓以及圓與圓位置關(guān)系的教學(xué),培養(yǎng)學(xué)生綜合運(yùn)用圓有關(guān)方面知識(shí)的能力(三)學(xué)科滲透點(diǎn)點(diǎn)與圓、直線與圓以及圓與圓的位置關(guān)系在初中平面幾何已進(jìn)行了分析,現(xiàn)在是用代數(shù)方法來分析幾何問題,是平面幾何問題的深化二、教材分析1重點(diǎn):(1)直線和圓的相切(圓的切線方程)、相交(弦長問題);(2)圓系方程應(yīng)用(解決辦法:(1)使學(xué)生掌握相切的幾何特征和代數(shù)特征,過圓上一點(diǎn)的圓的代線方程,弦長計(jì)算問題;(2)給學(xué)生介紹圓與圓相交的圓系方程以及直線與圓相交的圓系方程)2難點(diǎn):圓(x-a)2+(y-b)2=r2上一點(diǎn)(x0,y0)的切線方程的證明(解決辦法:仿照課本上圓x2+y2=r2上一點(diǎn)(x0,y0)切線方程的證明)三、活動(dòng)設(shè)計(jì)歸納講授、學(xué)生演板、重點(diǎn)講解、鞏固練習(xí)四、教學(xué)過程(一)知識(shí)準(zhǔn)備我們今天研究的課題是“點(diǎn)與圓、直線與圓以及圓與圓的位置關(guān)系”,為了更好地講解這個(gè)課題,我們先復(fù)習(xí)歸納一下點(diǎn)與圓、直線與圓以及圓與圓的位置關(guān)系中的一些知識(shí)1點(diǎn)與圓的位置關(guān)系設(shè)圓c(x-a)2+(y-b)2=r2,點(diǎn)m(x0,y0)到圓心的距離為d,則有:(1)dr 點(diǎn)m在圓外;(2)d=r 點(diǎn)m在圓上;(3)dr 點(diǎn)m在圓內(nèi)2直線與圓的位置關(guān)系設(shè)圓 c(x-a)2+(y-b)=r2,直線l的方程為ax+by+c=0,圓心(a,判別式為,則有:(1)dr 直線與圓相交;(2)d=r 直線與圓相切;(3)dr 直線與圓相離,即幾何特征;或(1)0 直線與圓相交;(2)=0 直線與圓相切;(3)0 直線與圓相離,即代數(shù)特征,3圓與圓的位置關(guān)系設(shè)圓c1:(x-a)2+(y-b)2=r2和圓c2:(x-m)2+(y-n)2=k2(kr),且設(shè)兩圓圓心距為d,則有:(1)d=k+r 兩圓外切;(2)d=k-r 兩圓內(nèi)切;(3)dk+r 兩圓外離;(4)dk+r 兩圓內(nèi)含;(5)k-rdk+r 兩圓相交4其他(1)過圓上一點(diǎn)的切線方程:圓x2+y2=r2,圓上一點(diǎn)為(x0,y0),則此點(diǎn)的切線方程為x0x+y0y=r2(課本命題)圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2(課本命題的推廣)(2)相交兩圓的公共弦所在直線方程:設(shè)圓c1x2+y2+d1x+e1y+f1=0和圓c2x2+y2+d2x+e2y+f2=0,若兩圓相交,則過兩圓交點(diǎn)的直線方程為(d1-d2)x+(e1-e2)y+(f1-f2)=0(3)圓系方程:設(shè)圓c1x2+y2+d1x+e1y+f1=0和圓c2x2+y2+d2x+e2y+f2=0若兩圓相交,則過交點(diǎn)的圓系方程為x2+y2+d1x+e1y+f1+(x2+y2+d2x+e2y+f2)=0(為參數(shù),圓系中不包括圓c2,=-1為兩圓的公共弦所在直線方程)設(shè)圓cx2+y2+dx+ey+f=0與直線l:ax+by+c=0,若直線與圓相交,則過交點(diǎn)的圓系方程為x2+y2+dx+ey+f+(ax+by+c)=0(為參數(shù))(二)應(yīng)用舉例和切點(diǎn)坐標(biāo)分析:求已知圓的切線問題,基本思路一般有兩個(gè)方面:(1)從代數(shù)特征分析;(2)從幾何特征分析一般來說,從幾何特征分析計(jì)算量要小些該例題由學(xué)生演板完成圓心o(0,0)到切線的距離為4,把這兩個(gè)切線方程寫成注意到過圓x2+y2=r2上的一點(diǎn)p(x0,y0)的切線的方程為x0x+y0y=r2,例2 已知實(shí)數(shù)a、b、c滿足a2+b2=2c20,求證直線ax+by+c=0與圓x2+y2=1交于不同的兩點(diǎn)p、q,并求弦pq的長分析:證明直線與圓相交既可以用代數(shù)方法列方程組、消元、證明0,又可以用幾何方法證明圓心到直線的距離小于圓半徑,由教師完成證:設(shè)圓心o(0,0)到直線ax+by+c=0的距離為d,則d=直線ax+by+c=0與圓x2+y1=1相交于兩個(gè)不同點(diǎn)p、q例3 求以圓c1x2+y2-12x-2y-13=0和圓c2:x2+y2+12x+16y-25=0的公共弦為直徑的圓的方程解法一:相減得公共弦所在直線方程為4x+3y-2=0所求圓以ab為直徑,于是圓的方程為(x-2)2+(y+2)2=25解法二:設(shè)所求圓的方程為:x2+y2-12x-2y-13+(x2+y2+12x+16y-25)=0(為參數(shù))圓心c應(yīng)在公共弦ab所在直線上, 所求圓的方程為x2+y2-4x+4y-17=0小結(jié):解法一體現(xiàn)了求圓的相交弦所在直線方程的方法;解法二采取了圓系方程求待定系數(shù),解法比較簡練(三)鞏固練習(xí)1已知圓的方程是x2+y2=1,求:(1)斜率為1的切線方程;2(1)圓(x-1)2+(y+2)2=4上的點(diǎn)到直線2x-y+1=0的最短距離是(2)兩圓c1x2+y2-4x+2y+4=0與c2x2+y2+2x-6y-26=0的位置關(guān)系是_(內(nèi)切)由學(xué)生口答3未經(jīng)過原點(diǎn),且過圓x2+y2+8x-6y+21=0和直線x-y+5=0的兩個(gè)交點(diǎn)的圓的方程分析:若要先求出直線和圓的交點(diǎn),根據(jù)圓的一般方程,由三點(diǎn)可求得圓的方程;若沒過交點(diǎn)的圓系方程,由此圓系過原點(diǎn)可確定參數(shù),從而求得圓的方程由兩個(gè)同學(xué)演板給出兩種解法:解法一:設(shè)所求圓的方程為x2+y2+dx+ey+f=0(0,0),(-2,3),(-4,1)三點(diǎn)在圓上,解法二:設(shè)過交點(diǎn)的圓系方程為:x2+y2+8x-6y+21+(x-y+5)=0五、布置作業(yè)2求證:兩圓x2+y2-4x-6y+9=0和x2+y2+12x+6y-19=0相外切3求經(jīng)過兩圓x2+y2+6x-4=0和x2+y2+6y-28=0的交點(diǎn),并且圓心在直線x-y-4=0上的圓的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年人教版PEP七年級(jí)物理上冊階段測試試卷含答案
- 2025年蘇科新版必修1地理上冊階段測試試卷含答案
- 2025年人教新起點(diǎn)九年級(jí)地理下冊月考試卷含答案
- 2025版南京租賃房屋裝修驗(yàn)收合同3篇
- 二零二五版酒店客房衛(wèi)生間潔具更換與維修合同3篇
- 承攬合同范本(2篇)
- 個(gè)人土地承租合同:2024年限版
- 2025年度房屋買賣借貸合同爭議解決機(jī)制合同4篇
- 二零二五版鋁灰運(yùn)輸合同范本-鋁灰運(yùn)輸與循環(huán)經(jīng)濟(jì)服務(wù)4篇
- 2025年度綠色住宅租賃及能源管理服務(wù)合同4篇
- 2025貴州貴陽市屬事業(yè)單位招聘筆試和高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024年住院醫(yī)師規(guī)范化培訓(xùn)師資培訓(xùn)理論考試試題
- 期末綜合測試卷(試題)-2024-2025學(xué)年五年級(jí)上冊數(shù)學(xué)人教版
- 2024年廣東省公務(wù)員錄用考試《行測》試題及答案解析
- 結(jié)構(gòu)力學(xué)本構(gòu)模型:斷裂力學(xué)模型:斷裂力學(xué)實(shí)驗(yàn)技術(shù)教程
- 2024年貴州省中考理科綜合試卷(含答案)
- 無人機(jī)技術(shù)與遙感
- PDCA提高臥床患者踝泵運(yùn)動(dòng)的執(zhí)行率
- 新東方四級(jí)詞匯-正序版
- 借名購車位協(xié)議書借名購車位協(xié)議書模板(五篇)
- 同步輪尺寸參數(shù)表詳表參考范本
評(píng)論
0/150
提交評(píng)論