




已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
附錄外文文獻(xiàn)翻譯 金剛石涂層刀具的涂層厚度的影響 作者: F. Qin, Y.K. Chou,D. Nolen and R.G. Thompson 發(fā)表日期: 2009 摘要: 化學(xué)氣相沉積法( CVD),金剛石薄膜的發(fā)現(xiàn),作為涂層刀具的應(yīng)用。即使傳統(tǒng)的金剛石涂層的使用似乎是公認(rèn)的切削,為不同的加工操作選擇適當(dāng)?shù)耐繉雍穸葲](méi)有經(jīng)常研究。涂層厚度影響涂層刀具在不同的角度,可能相互影響,在復(fù)雜的方式,在機(jī)械加工工具金剛石工具的性能特點(diǎn)。 在這項(xiàng)研究中,在沉積層厚度對(duì)殘余應(yīng)力,特別是圍繞一個(gè)前沿,對(duì)涂層的破壞模式進(jìn)行了數(shù)值研究。另一方面,刀具表面光滑涂層厚度的影響以及尖端的半徑進(jìn)行了實(shí)驗(yàn)研究。 此外,鋁基復(fù)合材料加工用金剛石涂層刀具涂層厚度變化進(jìn)行了評(píng)估對(duì)切削力的影響,零件表面光潔度和刀具磨損。 結(jié)果歸納如下 : (一)增加涂層厚度,涂層殘余應(yīng)力,基體界面。( 2)在另一方面,增加涂層厚度一般會(huì)增加涂層耐開裂和脫層。( 3)厚涂層將在更大的優(yōu)勢(shì)半 徑的結(jié)果,但是,對(duì)切削力的影響程度還取決于加工條件。( 4)的厚度范圍內(nèi)進(jìn)行測(cè)試,對(duì)金剛石涂層刀具壽命與因分層延遲涂層厚度的增加。 關(guān)鍵詞:涂層厚度、金剛石涂層、有限元、加工、刀具磨損 1、介紹 采用化學(xué)氣相沉積金剛石涂層生產(chǎn)法( CVD)技術(shù)已被越來(lái)越多地探討了刀具的應(yīng)用。金剛石涂層刀具在不同的加工應(yīng)用的巨大潛力和優(yōu)勢(shì),如切削鉆頭幾何形狀復(fù)雜的工具捏造。 輕質(zhì)高強(qiáng)度部件的增加也導(dǎo)致慣例,在金剛石涂層工具的重大利益。熱絲化 學(xué)氣相沉積金剛石涂層的是,厚度為 50 微米,對(duì)包括鈷硬質(zhì)合金(碳化鎢鈷) 1碳化鎢各種材料沉積金剛石薄膜被普遍進(jìn)程之一。 也有不同的化學(xué)氣相沉積技術(shù),如微波等離子體輔助 CVD,發(fā)展到提高沉積過(guò)程以及電影的質(zhì)量了。 然而,盡管上級(jí)摩擦學(xué)和力學(xué)性能,金剛石涂層刀具的實(shí)際應(yīng)用仍然有限。 涂層厚度是最重要的屬性之一,涂層系統(tǒng)的性 能。涂層的摩擦學(xué)性能厚度的影響已被廣泛研究。 一般來(lái)說(shuō),加厚涂層具有較好劃傷 /耐磨性比瘦的,因?yàn)樗鼈兏休d能力的表現(xiàn)。不過(guò),也有報(bào)道說(shuō),索賠。 例如,多納等。 發(fā)現(xiàn),即類金剛石涂層(類金剛石)厚度在 0.7-3.5 微米范圍內(nèi)的,不影響耐磨性的 DLC - Ti6Al4V 合金 3。對(duì)于刀具的應(yīng)用,然而,涂層厚度可能有其影響可能是因?yàn)橹車募舛烁鼜?fù)雜的作用增強(qiáng)。 涂層厚度對(duì)金剛石涂層刀具的影響是不是經(jīng)常報(bào)道。神田等人。 進(jìn)行使用金剛石涂層刀具切削試驗(yàn)。 撰文聲稱,增加薄膜的厚度一般是有利的刀具壽命。 然而,在較厚的薄膜將導(dǎo)致在 橫向斷裂強(qiáng)度,大大影響了在高速或中斷加工性能降低。此外,更高的切削力,觀察的工具,金剛石涂層厚度的增加,由于增加了尖端半徑。 夸德里尼等。研究金剛石涂層對(duì)牙科應(yīng)用小造紙廠。 作者不同的測(cè)試涂層厚度,并指出,導(dǎo)致高厚涂層,由于涂層表面粗糙度增加和擴(kuò)大優(yōu)勢(shì)四舍五入切削力。這種影響可能會(huì)導(dǎo)致失敗的銑削刀具陶瓷材料。提交人進(jìn)一步表示,在薄涂層聚合物基復(fù)合材料 最佳的切割效工具。 此外,托雷斯等人。 研究了金剛石涂層微觀兩個(gè)層次立銑刀的涂層厚度。作者還指出,薄涂層,可進(jìn)一步降低切割這是由于在摩擦力和粘附力下降。 不 同的涂料涂裝材料工具厚度影響也進(jìn)行了研究。 單層系統(tǒng),最佳涂層厚度可能存在的加工性能。例如,塔夫等。 報(bào)告說(shuō),一對(duì) TiN 涂層的 PVD 技術(shù)的最佳厚度為特定的加工條件存在 8。根據(jù)測(cè)試結(jié)果,為從 1.75 至 7.5 微米 TiN 涂層, 3.5 微米展覽的最佳轉(zhuǎn)彎性能厚度。 在另一項(xiàng)研究中,馬立克等。 還有人建議,有一對(duì)的 TiN 涂層高速鋼刀具加工時(shí)的最佳厚度易切削鋼。但是,對(duì)于多層涂層系統(tǒng),沒(méi)有這樣一個(gè)最佳的涂層厚度為加工性能存在。 這項(xiàng)研究的目的是為了實(shí)驗(yàn)研究金剛石涂層厚度對(duì)涂層刀具加工性能 - 刀具磨損和切削力。金剛石涂層刀具的制備,微波等離子體輔助 CVD,不同涂層厚度。 鉆石是在形態(tài)和邊緣半徑審查白光干涉涂層刀具。 然后,由鉆石加工鋁評(píng)估干基復(fù)合涂層工具。此外,沉積熱殘余應(yīng)力和涂層失效,影響了金剛石涂層刀具性能的關(guān)鍵負(fù)荷的解析研究。 2、實(shí)驗(yàn)研究 金剛石涂層的基體實(shí)驗(yàn)中使用的,方形刀片( SPG422),是細(xì)顆粒碳化鎢 6重量。鈷。邊緣半徑和切削刀片涂層表面紋理之前,是衡量一個(gè)白光干涉儀,由 Veeco 公司計(jì)量 NT1100。 在此之前的沉積,化學(xué)蝕刻上插入進(jìn)行治療,以消除和粗糙的表面鈷基體表面 。此外,所有工具插入了超聲波振動(dòng)在金剛石 /水泥漿,以增加成核密度。對(duì)于涂層工藝,沉積金剛石薄膜用高功率微波等離子體輔助化學(xué)氣相沉積過(guò)程。阿以 4.4-7.3的甲烷 /氫氣比例在氫氣,甲烷, 750-1000 sccm 的氣體混合物,被用來(lái)作為原料氣體。氮?dú)猓?2.75-5.5 sccm 的,是獲得納米結(jié)構(gòu)插入防止柱狀增長(zhǎng)。 壓力約 30-55 托和襯底溫度約為 685-830 攝氏度 一個(gè)低沉積率 4.5-5.0 千瓦的功率得到了一個(gè)薄涂層 ;一個(gè)更大的推進(jìn) 8.0-8.5 千瓦的高功率沉積速率得到厚涂層,通過(guò)改變沉積時(shí)間 2 厚度。 涂層刀片的進(jìn)一步檢查的干涉。 計(jì)算機(jī)數(shù)控車床,哈丁眼鏡蛇 42 條,被用來(lái)進(jìn)行加工實(shí)驗(yàn),外徑車削,以評(píng)估金剛石工具磨損涂層刀具。 隨著使用,金剛石涂層刀具刀片刀柄形成了 0 前角, 11 后角,和 75 導(dǎo)角。 工件都是 A359/SiC-20p 復(fù)合材料制成圓棒。使用的加工條件分別為 4 米 /秒的切割速度, 0.15 毫米 /轉(zhuǎn)速飼料,切深 1 毫米,無(wú)冷卻劑的應(yīng)用。 對(duì)加工參數(shù)的選擇是基于以前的經(jīng)驗(yàn)。 對(duì)于每個(gè)涂層厚度,兩個(gè)試驗(yàn)重復(fù)。 在加工測(cè)試,切割刀片進(jìn)行定期檢查用光學(xué)顯微鏡測(cè)量側(cè)面磨損土地面積。 廢舊工具測(cè)試后還審議通過(guò) 掃描電子顯微鏡( SEM)。此外,切削加工過(guò)程中進(jìn)行了監(jiān)測(cè)力量使用奇石樂(lè)測(cè)力計(jì)。 5、 結(jié)論 在這項(xiàng)研究中,對(duì)金剛石涂層刀具的涂層厚度的影響從不同的角度進(jìn)行了研究。沉積殘余應(yīng)力的工具由于熱不匹配是由有限元模擬和接口上的涂層厚度的影響,強(qiáng)調(diào)了量化研究。此外,鉆石壓痕模擬碳化鎢涂層與基體的粘結(jié)帶模擬接口被用于分析涂層系統(tǒng)故障。此外,不同厚度的金剛石涂層刀具的制備和表面形貌實(shí)驗(yàn),邊四舍五入調(diào)查,以及在機(jī)械加工刀具磨損和切削力。主要結(jié)果歸納如下。 ( 1)增加涂層厚度大大增加了接口的殘余應(yīng)力,雖然變化不大散裝表面應(yīng)力。 ( 2)厚涂層,涂層失效的臨界載荷隨涂層厚度的減小。不過(guò),這種趨勢(shì)是相反的薄涂層,對(duì)此徑向開裂的涂層的失效模式。 此外,加厚涂層有更大的脫層阻力。 ( 3)此外,增加涂層厚度的增加邊緣半徑。但是,在涂層厚度范圍內(nèi)研究, 4-29微米,與大飼料中使用,切削力受到影響輕微。 ( 4)盡管有更大的界面殘余應(yīng)力,提高金剛石涂層厚度,為研究范圍,似乎增加涂料分層延遲刀具壽命。 這項(xiàng)研究是由美國(guó)國(guó)家科學(xué)基金會(huì)的支持,批準(zhǔn)號(hào): CMMI的 0728228。 提供了一些分析援助。 附錄外文文獻(xiàn)原文 Coating thickness effects on diamond coated cutting tools F. Qin, Y.K. Chou,D. Nolen and R.G. Thompson Available online 12 June 2009. Abstract: Chemical vapor deposition (CVD)-grown diamond films have found applications as a hard coating for cutting tools. Even though the use of conventional diamond coatings seems to be accepted in the cutting tool industry, selections of proper coating thickness for different machining operations have not been often studied. Coating thickness affects the characteristics of diamond coated cutting tools in different perspectives that may mutually impact the tool performance in machining in a complex way. In this study, coating thickness effects on the deposition residual stress es, particularly around a cutting edge, and on coating failure modes were numerically investigated. On the other hand, coating thickness effects on tool surface smoothness and cutting edge radii were experimentally investigated. In addition, machining Al matrix composites using diamond coated tools with varied coating thicknesses was conducted to evaluate the effects on cutting forces, part surface finish and tool wear. The results are summarized as follows. Increasing coating thickness will increase the residual stresses at the coatingsubstrate interface. On the other hand, increasing coating thickness will generally increase the resistance of coating cracking and delamination. Thicker coatings will result in larger edge radii; however, the extent of the effect on cutting forces also depends upon the machining condition. For the thickness range tested, the life of diamond coated tools increases with the coating thickness because of delay of delaminations. Keywords: Coating thickness; Diamond coating; Finite element; Machining; Tool wear 1. Introduction Diamond coatings produced by chemical vapor deposition (CVD) technologies have been increasingly explored for cutting tool applications. Diamond coated tools have great potential in various machining applications and an advantage in fabrications of cutting tools with complex geometry such as drills. Increased usages of lightweight high-strength components have also resulted in significant interests in diamond coating tools. Hot-filament CVD is one of common processes of diamond coatings and diamond films as thick as 50 m have been deposited on various materials including cobalt-cemented tungsten carbide (WC-Co) . There have also been different CVD technologies, e.g., microwave plasma assisted CVD , developed to enhance the deposition process as well as the film quality too. However, despite the superior tribological and mechanical properties, the practical applications of diamond coated tools are still limited. Coating thickness is one of the most important attributes to the coating system performance. Coating thickness effects on tribological performance have been widely studied. In general, thicker coatings exhibited better scratch/wear resistance performance than thinner ones due to their better load-carrying capacity. However, there are also reports that claim otherwise and . For example, Dorner et al. discovered, that the thickness of diamond-like-coating (DLC), in a range of 0.73.5 m, does not influence the wear resistance of the DLCTi6Al4V . For cutting tool applications, however, coating thickness may have a more complicated role since its effects may be augmented around the cutting edge. Coating thickness effects on diamond coated tools are not frequently reported. Kanda et al. conducted cutting tests using diamond-coated tooling . The author claimed that the increased film thickness is generally favorable to tool life. However, thicker films will result in the decrease in the transverse rupture strength that greatly impacts the performance in high speed or interrupted machining. In addition, higher cutting forces were observed for the tools with increased diamond coating thickness due to the increased cutting edge radius. Quadrini et al. studied diamond coated small mills for dental applications . The authors tested different coating thickness and noted that thick coatings induce high cutting forces due to increased coating surface roughness and enlarged edge rounding. Such effects may contribute to the tool failure in milling ceramic materials. The authors further indicated tools with thin coatings results in optimal cutting of polymer matrix composite . Further, Torres et al. studied diamond coated micro-endmills with two levels of coating thickness . The authors also indicated that the thinner coating can further reduce cutting forces which are attributed to the decrease in the frictional force and adhesion. Coating thickness effects of different coating-material tools have also been studied. For single layer systems, an optimal coating thickness may exist for machining performance. For example, Tuffy et al. reported that an optimal coating thickness of TiN by PVD technology exists for specific machining conditions . Based on testing results, for a range from 1.75 to 7.5 m TiN coating, thickness of 3.5 m exhibit the best turning performance. In a separate study, Malik et al. also suggested that there is an optimal thickness of TiN coating on HSS cutting tools when machining free cutting steels . However, for multilayer coating systems, no such an optimum coating thickness exists for machining performance . The objective of this study was to experimentally investigate coating thickness effects of diamond coated tools on machining performance tool wear and cutting forces. Diamond coated tools were fabricated, by microwave plasma assisted CVD, with different coating thicknesses. The diamond coated tools were examined in morphology and edge radii by white-light interferometry. The diamond coated tools were then evaluated by machining aluminum matrix composite in dry. In addition, deposition thermal residual stresses and critical load for coating failures that affect the performance of diamond coated tools were analytically examined. 2. Experimental investigation The substrates used for diamond coating experiments, square-shaped inserts (SPG422), were fine-grain WC with 6 wt.% cobalt. The edge radius and surface textures of cutting inserts prior to coating was measured by a white-light interferometer, NT1100 from Veeco Metrology. Prior to the deposition, chemical etching treatment was conducted on inserts to remove the surface cobalt and roughen substrate surface. Moreover, all tool inserts were ultrasonically vibrated in diamond/water slurry to increase the nucleation density. For the coating process, diamond films were deposited using a high-power microwave plasma-assisted CVD process. A gas mixture of methane in hydrogen, 7501000 sccm with 4.47.3% of methane/hydrogen ratio, was used as the feedstock gas. Nitrogen gas, 2.755.5 sccm, was inserted to obtain nanostructures by preventing columnar growth. The pressure was about 3055 Torr and the substrate temperature was about 685830 C. A forward power of 4.55.0 kW with a low deposition rate obtained a thin coating; a greater forward power of 8.08.5 kW with a high deposition rate obtained thick coatings, two thicknesses by varying deposition time. The coated inserts were further inspected by the interferometer. A computer numerical control lathe, Hardinge Cobra 42, was used to perform machining experiments, outer diameter turning, to evaluate the tool wear of diamond coated tools. With the tool holder used, the diamond coated cutting inserts formed a 0 rake angle, 11 relief angle, and 75 lead angle. The workpieces were round bars made of A359/SiC-20p composite. The machining conditions used were 4 m/s cutting speed, 0.15 mm/rev feed, 1 mm depth of cut and no coolant was applied. The selection of machining parameters was based upon previous experiences. For each coating thickness, two tests were repeated. During machining testing, the cutting inserts were periodically inspected by optical microscopy to measure the flank wear-land size. Worn tools after testing were also examined by scanning electron microscopy (SEM). In addition, cutting forces were monitored during machining using a Kistler dynamometer. 5. Conclusions In this study, the coating thickness effects on diamond coated cutting tools were studied from different perspectives. Deposition residual stresses in the tool due to thermal mismatch were investigated by FE simulations and coating thickness effects on the interface stresses were quantified. In addition, indentation simulations of a diamond coated WC substrate with the interface modeled
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 臺(tái)風(fēng)降水考試題及答案
- 煤質(zhì)化驗(yàn)考試題及答案
- 公司門禁管理方案
- 社區(qū)防爆炸應(yīng)急方案
- 引流管術(shù)前健康宣教
- 水泵運(yùn)輸保障方案(3篇)
- 企業(yè)項(xiàng)目實(shí)施方案
- 企業(yè)商務(wù)人員培訓(xùn)課件
- 產(chǎn)品介紹培訓(xùn)
- 法制宣傳教育團(tuán)日活動(dòng)
- 危險(xiǎn)廢物突發(fā)事故應(yīng)急演練方案
- DB11-T 2408.1-2025城市管理大數(shù)據(jù)平臺(tái) 第1部分:架構(gòu)及接口規(guī)范
- 2023年08月江蘇省高郵市招考70名村級(jí)工作人員筆試上岸試題歷年
- 北京安全生產(chǎn)治本攻堅(jiān)三年行動(dòng)方案
- 建設(shè)單位全員安全生產(chǎn)責(zé)任清單
- 2025年中國(guó)服飾電商市場(chǎng)深度評(píng)估及投資方向研究報(bào)告
- 江蘇南京金陵中學(xué)2024~2025學(xué)年高二下冊(cè)期末考試數(shù)學(xué)試題含解析
- 2026屆高三語(yǔ)文一輪復(fù)習(xí)教學(xué)計(jì)劃
- 給非財(cái)務(wù)人員的財(cái)務(wù)培訓(xùn)
- 公司攝影小組活動(dòng)方案
- 銀行 輿情培訓(xùn) 課件
評(píng)論
0/150
提交評(píng)論