



全文預覽已結束
下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
_Correspondingauthor:AlbanAgazzi,UniversitdeNantes-LaboratoiredethermocintiquedeNantes,LaChantrerie,rueChristianPauc,BP50609,44306Nantescedex3-France,phone:+33240683171,fax:+33240683141email:alban.agazziuniv-nantes.frAMETHODOLOGYFORTHEDESIGNOFEFFECTIVECOOLINGSYSTEMININJECTIONMOULDINGA.Agazzi1*,V.Sobotka1,R.LeGoff2,D.Garcia2,Y.Jarny11UniversitdeNantes,NantesAtlantiqueUniversits,LaboratoiredeThermocintiquedeNantes,UMRCNRS6607,rueChristianPauc,BP50609,F-44306NANTEScedex3,France2PleEuropendePlasturgie,2ruePierreetMarieCurie,F-01100BELLIGNAT,FranceABSTRACT:Inthermoplasticinjectionmoulding,partqualityandcycletimedependstronglyonthecoolingstage.Numerousstrategieshavebeeninvestigatedinordertodeterminethecoolingconditionswhichminimizeundesireddefectssuchaswarpageanddifferentialshrinkage.Inthispaperweproposeamethodologyfortheoptimaldesignofthecoolingsystem.Basedongeometricalanalysis,thecoolinglineisdefinedbyusingconformalcoolingconcept.Itdefinesthelocationsofthecoolingchannels.Weonlyfocusonthedistributionandintensityofthefluidtemperaturealongthecoolinglinewhichisherefixed.Weformulatethedeterminationofthistemperaturedistribution,astheminimizationofanobjectivefunctioncomposedoftwoterms.Itisshownhowthistwoantagonisttermshavetobeweightedtomakethebestcompromise.Theexpectedresultisanimprovementofthepartqualityintermsofshrinkageandwarpage.KEYWORDS:Inverseproblem,heattransfer,injectionmoulding,coolingdesign1INTRODUCTIONInthefieldofplasticindustry,thermoplasticinjectionmouldingiswidelyused.Theprocessiscomposedoffouressentialstages:mouldcavityfilling,meltpacking,solidificationofthepartandejection.Aroundseventypercentofthetotaltimeoftheprocessisdedicatedtothecoolingofthepart.Moreoverthisphaseimpactsdirectlyonthequalityofthepart12.Asaconsequence,thepartmustbecooledasuniformlyaspossiblesothatundesireddefectssuchassinkmarks,warpage,shrinkage,thermalresidualstressesareminimized.Themostinfluentparameterstoachievetheseobjectivesarethecoolingtime,thenumber,thelocationandthesizeofthechannels,thetemperatureofthecoolantfluidandtheheattransfercoefficientbetweenthefluidandtheinnersurfaceofthechannels.Thecoolingsystemdesignwasprimarilybasedontheexperienceofthedesignerbutthedevelopmentofnewrapidprototypingprocessmakespossibletomanufactureverycomplexchannelshapeswhatmakesthisempiricalformermethodinadequate.Sothedesignofthecoolingsystemmustbeformulatedasanoptimizationproblem.1.1HEATTRANSFERANALYSISThestudyofheattransferconductionininjectiontoolsisanonlinearproblemduetothedependenceofparameterstothetemperature.Howeverthermophysicalparametersofthemouldsuchasthermalconductivityandheatcapacityremainconstantintheconsideredtemperaturerange.Inadditiontheeffectofpolymercrystallisationisoftenneglectedandthermalcontactresistancebetweenthemouldandthepartisconsideredmoreoftenasconstant.TheevolutionofthetemperaturefieldisobtainedbysolvingtheFouriersequationwithperiodicboundaryconditions.Thisevolutioncanbesplitintwoparts:acyclicpartandanaveragetransitorypart.Thecyclicpartisoftenignoredbecausethedepthofthermalpenetrationdoesnotaffectsignificantlythetemperaturefield3.Manyauthorsusedanaveragecyclicanalysiswhichsimplifiesthecalculus,butthefluctuationsaroundtheaveragecanbecomprisedbetween15%and40%3.Thecloserofthepartthechannelsare,thehigherthefluctuationsaroundtheaverageare.Henceinthatconfigurationitbecomesveryimportanttomodelthetransientheattransfereveninstationaryperiodicstate.Inthisstudy,theperiodictransientanalysisoftemperaturewillbepreferredtotheaveragecycletimeanalysis.Itshouldbenoticedthatinpracticethedesignofthecoolingsystemisthelaststepforthetooldesign.Neverthelesscoolingbeingofprimaryimportanceforthequalityofthepart,thethermaldesignshouldbeoneofthefirststagesofthedesignofthetools.DOI10.1007/s12289-010-0695-2Springer-VerlagFrance2010IntJMaterForm(2010)Vol.3Suppl1:16131.2OPTIMIZATIONTECHNIQUESINMOULDINGIntheliterature,variousoptimizationprocedureshavebeenusedbutallfocusedonthesameobjectives.Tangetal.4usedanoptimizationprocesstoobtainauniformtemperaturedistributioninthepartwhichgivesthesmallestgradientandtheminimalcoolingtime.Huang5triedtoobtainuniformtemperaturedistributioninthepartandhighproductionefficiencyi.eaminimalcoolingtime.Lin6summarizedtheobjectivesofthemoulddesignerin3facts.Coolthepartthemostuniformly,achieveadesiredmouldtemperaturesothatthenextpartcanbeinjectedandminimizethecycletime.Theoptimalcoolingsystemconfigurationisacompromisebetweenuniformityandcycletime.Indeedthelongerthedistancebetweenthemouldsurfacecavityandthecoolingchannelsis,thehighertheuniformityofthetemperaturedistributionwillbe6.Inversely,theshorterthedistanceis,thefastertheheatisremovedfromthepolymer.Howevernonuniformtemperaturesatthemouldsurfacecanleadtodefectsinthepart.Thecontrolparameterstogettheseobjectivesarethenthelocationandthesizeofthechannels,thecoolantfluidflowrateandthefluidtemperature.Twokindsofmethodologyareemployed.Thefirstoneconsistsinfindingtheoptimallocationofthechannelsinordertominimizeanobjectivefunction47.Thesecondapproachisbasedonaconformalcoolingline.Lin6definesacoolinglinerepresentingtheenvelopofthepartwherethecoolingchannelsarelocated.Optimalconditions(locationonthecoolingandsizeofthechannels)aresearchedonthiscoolingline.Xuetal.8gofurtherandcutthepartincoolingcellsandperformtheoptimizationoneachcoolingcell.1.3COMPUTATIONALALGORITHMSTocomputethesolution,numericalmethodsareneeded.Theheattransferanalysisisperformedeitherbyboundaryelements7orfiniteelementsmethod4.Themainadvantageofthefirstoneisthatthenumberofunknownstobecomputedislowerthanwithfiniteelements.Onlytheboundariesoftheproblemaremeshedhencethetimespenttocomputethesolutionisshorterthanwithfiniteelements.Howeverthismethodonlyprovidesresultsontheboundariesoftheproblem.Inthisstudyafiniteelementmethodispreferredbecausetemperatureshistoryinsidethepartisneededtoformulatetheoptimalproblem.TocomputeoptimalparameterswhichminimizetheobjectivefunctionTangetal.4usethePowellsconjugatedirectionsearchmethod.Matheyetal.7usetheSequentialQuadraticProgrammingwhichisamethodbasedongradients.Itcanbefoundnotonlydeterministicmethodsbutalsoevolutionarymethods.Huangetal.5useageneticalgorithmtoreachthesolution.Thislastkindofalgorithmisverytimeconsumingbecauseittriesalotofrangeofsolution.Inpracticetimespentformoulddesignmustbeminimizedhenceadeterministicmethod(conjugategradient)whichreachesanacceptablelocalsolutionmorerapidlyispreferred.2METHODOLOGY2.1GOALSThemethodologydescribedinthispaperisappliedtooptimizethecoolingsystemdesignofaT-shapedpart(Figure1).ThisshapeisencounteredinmanypaperssocomparisoncaneasilybedoneinparticularlywithTangetal.4.Figure1:HalfT-shapedgeometryBasedonamorphologicalanalysisofthepart,twosurfaces1and3areintroducedrespectivelyastheerosionandthedilation(coolingline)ofthepart(Figure1).Theboundaryconditionoftheheatconductionproblemalongthecoolingline3isathirdkindconditionwithinfinitetemperaturesfixedasfluidtemperatures.Theoptimizationconsistsinfindingthesefluidtemperatures.Usingacoolinglinepreventstochoosethenumberandsizeofcoolingchannelsbeforeoptimizationiscarriedout.Thisrepresentsanimportantadvantageincaseofcomplexpartswherethelocationofchannelsisnotintuitive.Thelocationoftheerosionlineinthepartcorrespondstotheminimumsolidifiedthicknessofpolymerattheendofcoolingstagesothatejectorscanremovethepartfromthemouldwithoutdamages.2.2OBJECTIVEFUNCTIONIncoolingsystemoptimization,thepartqualityshouldbeofprimarilyimportance.Becausetheminimumcoolingtimeoftheprocessisimposedbythethicknessandthematerialpropertiesofthepart,itisimportanttoreachtheoptimalqualityinthegiventime.Thefluidtemperatureimpactsdirectlythetemperatureofthemouldandthepart,andforturbulentfluidflowtheonlycontrolparameteristhecoolingfluidtemperature.Inthefollowing,theparametertobeoptimizedisthefluidtemperatureandthedeterminationoftheoptimaldistributionaroundthepartisformulatedastheminimizationofanobjectivefunctionScomposedoftwotermscomputedattheendofthecoolingperiod(Equation(1).ThegoalofthefirsttermS1istoreachatemperaturelevelalongtheerosionofthepart.ThesecondtermS2usedinmanyworks47aimstohomogenizethetemperaturedistributionatthesurfaceofthepartandthereforetoreducethecomponentsof14thermalgradientbothalongthesurface2andthroughthethicknessofthepart.ThesetwotermsareweightedbyintroducingthevariablerefT.ItmustbenotedthatwhenrefTthecriterionisreducedtothefirstterm.Onthecontrarytheweightofthesecondtermisincreasedwhen0refT.()+=222112.dTTTdTTTTTSrfejecinjejecfluid(1)ejecT:Ejectiontemperature,injT:Injectiontemperature,refT:Referencetemperature,infT:Fluidtemperature,T:Temperaturefieldcomputedwiththeperiodicconditions(),0(,0XtTXTf+=21X,andft,0isthecoolingperiod,=dTT22.1:Averagesurfacetemperatureofthepartattheejectiontimeft.3NUMERICALRESULTSNumericalresultsarecomparedwiththoseofTangetal4whoconsidertheoptimalcoolingoftheT-shapedpartbydeterminingtheoptimallocationof7coolingchannelsandtheoptimalfluidflowrateofthecoolant.Thefirststepwastoreproducetheirresults(leftpartofFigure2)obtainedwiththefollowingconditions(casew=0.75in4):KTfluid303=,fluidflowratescmQ/3643=ineachcoolingchannels,s5.23=ft.Figure2:GeometryTang(left)andcoolingline(right)Case1:Coolinglineversusfinitenumberofchannelsforaconstantfluidtemperature(fluidT).Theaveragedistance(cmd5.1=)betweenthe7channelsandthepartsurfaceinthecoolingsystemdeterminedbyTangisadoptedinoursystemforlocatingthecoolingline3.Moreover,thefluidtemperatureandtheheattransfercoefficientvaluesissuedfromTangareimposedonthedilationofthepart3.InFigure3thetemperatureprofilesalongthepartsurface2arecomparedattheejectiontimeft.Allthetemperatureprofilesalongthesurfaces3,2,1=iiareplottedcounter-clockwiseonlyonthehalfpartfromiAtoiB(Figure1)andattheejectiontime.Weobservethatthemagnitudeofthetemperatureislessuniformwiththecoolinglinethanwiththe7channels(15Kinsteadof5K).Hencetheoptimalcoolingconfigurationcomputedwithafinitenumberofchannelsisbetterthanthiswiththecoolinglineanditwillbethenconsideredasareference.Figure3:Temperatureprofilesalongthepartsurface2Case2:Coolinglinewithavariablefluidtemperature()(sTfluid)andtheweightingfactorrefT.Thefluidtemperatures)(sTfluidarecomputedbyminimizingtheobjectivefunctionofEquation1wherethesecondtermisignored.TheresultsareplottedinFigures4and5.Figure4:TemperatureprofilesalongtheerosionFigure5:TemperatureprofilesalongthepartsurfaceInFigure4thetemperatureprofileontheerosionismuchuniformandclosetotheejectiontemperaturewithourmethod(-511.79.10S=)thanwithTangsmethod(-512.32.10=S).Howeverinbothcasesapeakremainsbetween0.12mand0.14mwhichcorrespondstothetopoftherib(B1inFigure1).Thishotspotisduetothegeometryofthepartandisverydifficulttocool.NeverthelessinFigure5wenoticethattheprofileoftemperatureatthepartsurfaceislessuniformthanin15case1(20Kinsteadof15K).Inconclusion,thefirsttermisnotsufficienttoimprovethehomogeneityatthepartsurfacebutitisadequateforachievingadesiredleveloftemperatureinthepart.Case3:Coolinglinewith()(sTfluid)andtheweightingfactorsKTref10=andKTref100=.Thefluidtemperatures)(sTfluidarenowcomputedbyminimizingtheobjectivefunctionofEquation1withKTref10=andKTref100=.ResultsareplottedinFigures6and7.Figure6:TemperatureprofilesalongthepartsurfaceFigure7:TemperatureprofilesalongtheerosionTheinfluenceofthetermS2isshowninFigure6.Thistermmakesthesurfacetemperatureofthepartuniform.IndeedincaseKTref10=temperatureisquasi-constantalloverthesurface2exceptforthehotspotasexplainedpreviously.HoweverforthisvalueofrefT,thetemperatureontheerosionisnotacceptable,themeantemperaturebeingtoohigh(340Kforadesiredlevelof336K).Thenthesecondtermimprovesthehomogeneityattheinterfacebuthedgesthesolution.Makinguniformthetemperatureattheinterfacemeanwhileextractingthetotalheatfluxneededtoobtainadesiredleveloftemperatureinthepart,becomeantagonisticproblemsifthislevelistoolow.Thebestsolutionwillbeacompromisebetweenqualityandefficiency.Forexample,bysettingKTref100=theleveloftemperature(ejecT)inthepartisreachedwhereasthesolutionbecomeslessuniformthanwiththevalueofKTref10=.NonethelessthissolutionremainsmoreuniformthanthesolutiongivenbyTang.Theoptimalfluidtemperatureprofilealongthedilationofthehalfpartisplotted(Figure8).Figure8:Optimalfluidtemperatureprofile4CONCLUSIONSInthispaper,anoptimizationmethodwasdevelopedtodeterminethetemperaturedistributiononacoolinglinetoobtainauniformtemperaturefieldinthepartwhichlea
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030工模鋼產(chǎn)業(yè)市場深度調(diào)研及發(fā)展趨勢與發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025至2030鋯英砂行業(yè)市場深度研究與戰(zhàn)略咨詢分析報告
- 精準醫(yī)療與智慧健康管理行業(yè)的未來展望
- 2025至2030高密度元件市場前景分析及發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 四川省德陽市名校2024年數(shù)學八上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析
- 北京順義2024-2025學年八上物理期末調(diào)研試題含解析
- 激光雕刻機生產(chǎn)制造項目投資分析報告
- 安全生產(chǎn)四不放過指什么
- 企業(yè)消防安全制度模板
- 安全生產(chǎn)責任落實原則
- 安保工作月度總結
- 開業(yè)美容項目活動方案
- 2025年技術玻璃制品行業(yè)市場調(diào)研報告
- 2025至2030高純氯化鉀行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 黨課課件含講稿:以作風建設新成效激發(fā)干事創(chuàng)業(yè)新作為
- 2025年度職業(yè)技能鑒定國家題庫維修電工高級技師復習題庫及答案(完整版)
- 安措費使用計劃報審表(施工報-監(jiān)理審-業(yè)主批)
- Q∕SY 02625.2-2018 油氣水井帶壓作業(yè)技術規(guī)范 第2部分:設備配備、使用與維護
- 調(diào)研報告:農(nóng)村糧食經(jīng)紀人現(xiàn)狀、存在問題及建議
- 鋼筋平行檢驗記錄范本
- 2021-2022學年安徽省蚌埠市高一下學期期末數(shù)學試題【含答案】
評論
0/150
提交評論