![七年級(jí)數(shù)學(xué)下冊(cè)復(fù)習(xí)資料_第1頁](http://file1.renrendoc.com/fileroot_temp2/2020-12/26/6433789d-1863-4da4-9dea-b8ebc1036daf/6433789d-1863-4da4-9dea-b8ebc1036daf1.gif)
![七年級(jí)數(shù)學(xué)下冊(cè)復(fù)習(xí)資料_第2頁](http://file1.renrendoc.com/fileroot_temp2/2020-12/26/6433789d-1863-4da4-9dea-b8ebc1036daf/6433789d-1863-4da4-9dea-b8ebc1036daf2.gif)
![七年級(jí)數(shù)學(xué)下冊(cè)復(fù)習(xí)資料_第3頁](http://file1.renrendoc.com/fileroot_temp2/2020-12/26/6433789d-1863-4da4-9dea-b8ebc1036daf/6433789d-1863-4da4-9dea-b8ebc1036daf3.gif)
![七年級(jí)數(shù)學(xué)下冊(cè)復(fù)習(xí)資料_第4頁](http://file1.renrendoc.com/fileroot_temp2/2020-12/26/6433789d-1863-4da4-9dea-b8ebc1036daf/6433789d-1863-4da4-9dea-b8ebc1036daf4.gif)
![七年級(jí)數(shù)學(xué)下冊(cè)復(fù)習(xí)資料_第5頁](http://file1.renrendoc.com/fileroot_temp2/2020-12/26/6433789d-1863-4da4-9dea-b8ebc1036daf/6433789d-1863-4da4-9dea-b8ebc1036daf5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第五章 相交線與平行線平面內(nèi),點(diǎn)與直線之間的位置關(guān)系分為兩種: 點(diǎn)在線上 點(diǎn)在線外同一平面內(nèi),兩條或多條不重合的直線之間的位置關(guān)系只有兩種: 相交 平行一、相交線1、兩條直線相交,有且只有一個(gè)交點(diǎn)。 (反之,若兩條直線只有一個(gè)交點(diǎn),則這兩條直線相交。) 兩條直線相交,產(chǎn)生鄰補(bǔ)角和對(duì)頂角的概念:鄰補(bǔ)角:兩角共一邊,另一邊互為反向延長(zhǎng)線。 鄰補(bǔ)角互補(bǔ)。 要注意區(qū)分互為鄰補(bǔ)角與互為補(bǔ)角的異同。對(duì)頂角:兩角共頂點(diǎn),一角兩邊分別為另一角兩邊的反向延長(zhǎng)線。 對(duì)頂角相等。注:、同角或等角的余角相等;同角或等角的補(bǔ)角相等;等角的對(duì)頂角相等。 反過來亦成立。、表述鄰補(bǔ)角、對(duì)頂角時(shí),要注意相對(duì)性,即“互為”,要講
2、清誰是誰的鄰補(bǔ)角或?qū)斀恰?例如:判斷對(duì)錯(cuò): 因?yàn)锳BC +DBC = 180,所以DBC是鄰補(bǔ)角。( ) 相等的兩個(gè)角互為對(duì)頂角。( )2、垂直是兩直線相交的特殊情況。 注意:兩直線垂直,是互相垂直,即:若線a垂直線b,則線b垂直線a 。垂足:兩條互相垂直的直線的交點(diǎn)叫垂足。 垂直時(shí),一定要用直角符號(hào)表示出來。過一點(diǎn)有且只有一條直線與已知直線垂直。(注:這一點(diǎn)可以在已知直線上,也可以在已知直線外)3、點(diǎn)到直線的距離。垂線段:過線外一點(diǎn),作已知線的垂線,這點(diǎn)到垂足之間的線段叫 垂線段。垂線與垂線段:垂線是一條直線,而垂線段是一條線段,是垂線的一部分。垂線段最短:連接直線外一點(diǎn)與直線上各點(diǎn)的所有
3、線段中,垂線段最短。(或說 直角三角形中,斜邊大于直角邊。)點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度,叫這點(diǎn)到直線的距離。 注:距離指的是垂線段的長(zhǎng)度,而不是這條垂線段的本身。所以,如果在判斷時(shí),若沒有“長(zhǎng)度”兩字,則是錯(cuò)誤的。4、同位角、內(nèi)錯(cuò)角、同旁內(nèi)角三線六面八角:平面內(nèi),兩條直線被第三條直線所截,將平面分成了六個(gè)部分,形成八個(gè)角,其中有:4對(duì)同位角,2對(duì)內(nèi)錯(cuò)角和2對(duì)同旁內(nèi)角。 注意:要熟練地認(rèn)識(shí)并找出這三種角: 根據(jù)三種角的概念來區(qū)分 借助模型來區(qū)分,即:同位角F型,內(nèi)錯(cuò)角Z型,同旁內(nèi)角U型。特別注意: 三角形的三個(gè)內(nèi)角均互為同旁內(nèi)角; 同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的稱呼并不一定要
4、建立在兩條平行的直線被第三條直線所截的前提上才有的,這兩條直線也可以不平行,也同樣的有同位角、內(nèi)錯(cuò)角、同旁內(nèi)角。5、幾何計(jì)數(shù): 平面內(nèi)n條直線兩兩相交,共有n ( n 1) 組對(duì)頂角。(或?qū)懗?n2 n 組) 平面內(nèi)n條直線兩兩相交,最多有n(n1)/2個(gè)交點(diǎn)。(或?qū)懗桑╪2n)/2個(gè)) 平面內(nèi)n條直線兩兩相交,最多把平面分割成n(n+1)/2+1個(gè)面。 當(dāng)平面內(nèi)n個(gè)點(diǎn)中任意三點(diǎn)均不共線時(shí),一共可以作n(n1)/2 條直線?;仡櫍?、一條直線上n個(gè)點(diǎn)之間,一共有n(n1)/2 條線段;、若從一個(gè)點(diǎn)引出n條射線,則一共有n(n1)/2 個(gè)角。二、平行線同一平面內(nèi),兩條直線若沒有公共點(diǎn)(即交點(diǎn)),那
5、么這兩條直線平行。 注:平行線永不相交。1、平行公理:過直線外一點(diǎn),有且只有一條直線與已知直線平行。 (注:這一點(diǎn)是在直線外)推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。 (或叫平行線的傳遞性)2、平行線的畫法:借助三角板和直尺。具體略。(此基本作圖方法一定要掌握,多練習(xí)。)3、平行線的判定: 同位角相等,兩直線平行; 內(nèi)錯(cuò)角相等,兩直線平行; 同旁內(nèi)角互補(bǔ),兩直線平行。注意:是先看角如何,再判斷兩直線是否平行,前提是“角相等/ 互補(bǔ)”。一個(gè)重要結(jié)論:同一平面內(nèi),垂直于同一直線的兩條直線互相平行。4、平行線的性質(zhì): 兩直線平行,同位角相等; 兩直線平行,內(nèi)錯(cuò)角相等; 兩直線
6、平行,同旁內(nèi)角互補(bǔ)。注意:是先有兩直線平行,才有以上的性質(zhì),前提是“線平行”。 一個(gè)結(jié)論:平行線間的距離處處相等。 例如:應(yīng)用于 說明矩形(包括長(zhǎng)方形、正方形)的對(duì)邊相等,還有梯形的對(duì)角線把梯形分成分別以上底為底的兩等面積的三角形,或 以下底為底的兩等面積的三角形。(因?yàn)樘菪蔚纳系着c下底平行,平行線間的高相等,所以,就有等底等高的三角形。) 此章難度最大就在如何利用平行線的判定或性質(zhì)來進(jìn)行解析幾何的初步推理,要在熟練掌握好基本知識(shí)點(diǎn)的基礎(chǔ)上,學(xué)會(huì)邏輯推理,既要條理清晰,又要簡(jiǎn)潔明了。5、命題判斷一件事情的語句叫命題。命題包括“題設(shè)”和“結(jié)論”兩部分,可寫成“如果那么”的形式。例如:“明天可能下
7、雨?!边@句語句_命題,而“今天很熱,明天可能下雨?!边@句語句_命題。(填“是”或“不是”) 命題分為真命題 與 假命題,真命題指題設(shè)成立,結(jié)論也成立的命題(或說正確的命題)。假命題指題設(shè)成立,但結(jié)論不一定或根本不成立的命題(或說錯(cuò)誤的命題)。 逆命題:將一個(gè)命題的題設(shè)與結(jié)論互換位置之后,形成新的命題,就叫原命題的逆命題。注:原命題是真命題,其逆命題不一定仍為真命題,同理,原命題為假命題,其逆命題也不一定為假命題。例如:“對(duì)頂角相等”是個(gè)真命題,但其逆命題“_”卻是個(gè)假命題。不論是真命題還是假命題,都要學(xué)會(huì)能非常熟練地把一個(gè)命題寫成“如果那么”的形式。例:把“等角的補(bǔ)角相等”寫成“如果 那么”的
8、形式為:_。再例:把“三角形的內(nèi)角和等于180度?!睂懗砂}設(shè)與結(jié)論的形式:_。三、平移1、 概念:把圖形的整體沿著某一方向移動(dòng)一定的距離,得到一個(gè)新的圖形,這種圖形的移動(dòng),叫平移。 確定平移,關(guān)鍵是要弄清平移的方向(并不一定是水平移動(dòng)或垂直移動(dòng)哦)與平移的距離。如果是斜著平移的,則需把由起始位置至最終位置拆分為先水平移動(dòng),再上下移動(dòng),或拆分為先上下移動(dòng),再水平移動(dòng)。當(dāng)然,如果是在格點(diǎn)圖內(nèi)平移,則可利用已知點(diǎn)的平移距離是某一矩形的對(duì)角線這一特點(diǎn)來對(duì)應(yīng)完成其它頂點(diǎn)的平移。2、 特征: 發(fā)生平移時(shí),新圖形與原圖形的形狀、大小完全相同(即:對(duì)應(yīng)線段、對(duì)應(yīng)角均相等); 對(duì)應(yīng)點(diǎn)之間的線段互相平行(或在
9、同一直線上)且相等,均等于平移距離。3、畫法:掌握平移方向與平移距離,利用對(duì)應(yīng)點(diǎn)(一般指圖形的頂點(diǎn))之間連線段平行、連線段相等性質(zhì)描出原圖形頂點(diǎn)的對(duì)應(yīng)點(diǎn),再依次連接,就形成平移后的新圖形。第六章 平面直角坐標(biāo)系 一、坐標(biāo)1、數(shù)軸 規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的直線叫數(shù)軸。 數(shù)軸上的點(diǎn)可以用一個(gè)數(shù)來表示,這個(gè)數(shù)叫這個(gè)點(diǎn)在數(shù)軸上的坐標(biāo)。 數(shù)軸上的點(diǎn)與實(shí)數(shù)(包括有理數(shù)與無理數(shù))一一對(duì)應(yīng),數(shù)軸上的每一個(gè)點(diǎn)都有唯一的一個(gè)數(shù)與之對(duì)應(yīng)。2、平面直角坐標(biāo)系 由互相垂直、且原點(diǎn)重合的兩條數(shù)軸組成。 橫向(水平)方向的為橫軸(x軸),縱向(豎直)方向的為縱軸(y軸), 平面直角坐標(biāo)系上的任一點(diǎn),都可用一對(duì)有序?qū)崝?shù)
10、對(duì)來表示位置,這對(duì)有序?qū)崝?shù)對(duì)就叫這點(diǎn)的坐標(biāo)。(即是用有順序的兩個(gè)數(shù)來表示,注:x在前,y在后,不能隨意更改) 坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的,每一個(gè)點(diǎn),都有唯一的一對(duì)有序?qū)崝?shù)對(duì)與之對(duì)應(yīng)。二、象限及坐標(biāo)平面內(nèi)點(diǎn)的特點(diǎn) 1、四個(gè)象限 平面直角坐標(biāo)系把坐標(biāo)平面分成四個(gè)象限,從右上部分開始,按逆時(shí)針方向分別叫第一象限(或第象限)、第二象限(或第象限)、第三象限(第象限)和第四象限(或第象限)。 注:、坐標(biāo)軸(x軸、y軸)上的點(diǎn)不屬于任何一個(gè)象限。例 點(diǎn)A(3,0)和點(diǎn)B(0,-5) 、平面直角坐標(biāo)系的原點(diǎn)發(fā)生改變,則點(diǎn)的坐標(biāo)相應(yīng)發(fā)生改變;坐標(biāo)軸的單位長(zhǎng)度發(fā)生改變,點(diǎn)的坐標(biāo)也相應(yīng)發(fā)生改變。2、坐
11、標(biāo)平面內(nèi)點(diǎn)的位置特點(diǎn) 、坐標(biāo)原點(diǎn)的坐標(biāo)為(0,0);、第一象限內(nèi)的點(diǎn),x、y同號(hào),均為正; 、第二象限內(nèi)的點(diǎn),x、y異號(hào),x為負(fù),y為正;、第三象限內(nèi)的點(diǎn),x、y同號(hào),均為負(fù); 、第四象限內(nèi)的點(diǎn),x、y異號(hào),x為正,y為負(fù);、橫軸(x軸)上的點(diǎn),縱坐標(biāo)為0,即(x,0),所以,橫軸也可寫作:y=0 (表示一條直線)、縱軸(y軸)上的點(diǎn),橫坐標(biāo)為0,即(0,y),所以,縱橫也可寫作:x=0 (表示一條直線)例:若P(x,y),已知xy0,則P點(diǎn)在第_象限,已知xyc ,或a+cb ,或b+ca )2、推論:三角形的任意兩邊之差小于第三邊。特別注意:(1)、以上兩點(diǎn)就是判斷任意給定的三條線段能否組
12、成三角形的條件,但在實(shí)際做題時(shí),并不需要去分析全部三組邊的大小關(guān)系,可簡(jiǎn)化為:當(dāng)三條線段中最長(zhǎng)的線段小于另兩條較短線段之和時(shí),或 當(dāng)三條線段中最短的線段大于另兩條較長(zhǎng)線段之差的絕對(duì)值時(shí),即可組成三角形。(2)、已知三角形的兩邊a,b(ab),則第三邊c的取值范圍為:ab c 0) 、a + 3 ,a + 4 ,a + 7 (a0) 、3a , 4a , 2a + 1 (a1/5) 例:已知M是ABC內(nèi)一點(diǎn),試說明:AB + AC MB + MC (圖自畫)四、有關(guān)三角形邊長(zhǎng)的綜合問題1、等腰三角形:等腰三角形有兩相等的腰和一底邊,題目中往往并不直接說明腰和底邊,因此,解題時(shí)要分類討論,以免丟解
13、。例:等腰三角形的周長(zhǎng)為24cm,其中兩條邊長(zhǎng)的比為 3 :2,求該等腰三角形的三邊長(zhǎng)。例:已知等腰三角形的周長(zhǎng)是16cm,(1)若其中一邊長(zhǎng)為6cm,求另外兩邊長(zhǎng); (2)若其中一邊長(zhǎng)為4cm,求另外兩邊長(zhǎng)。例:在等腰ABC中,AB=AC,一腰上的中線BD將三角形周長(zhǎng)分為21和12兩部分,求這個(gè)三角形的腰長(zhǎng)和底邊長(zhǎng)。注:根據(jù)三角形三邊關(guān)系,若等腰三角形的腰長(zhǎng)為a,則底邊長(zhǎng)x 的取值范圍是:0 x a/22、其它例:已知ABC和三角形內(nèi)的一點(diǎn)P,試說明:AB + AC PB + PC (圖略)五、三角形的中線、角平分線和高(圖表區(qū)別) 名稱 中線 角平分線 高三角形一個(gè)角的平分線與對(duì)邊相交,頂
14、點(diǎn)與交點(diǎn)的連線段三角形一邊上的中點(diǎn)與這邊所對(duì)的頂點(diǎn)的連線段從三角形的頂點(diǎn)向?qū)吇驅(qū)叺难娱L(zhǎng)線作垂線,垂足與頂點(diǎn)的連線段 定義形狀 線段 線段 線段數(shù)量 3條 3條 3條銳角三角形的高均在三角形內(nèi);直角三角形斜邊上的高在三角形內(nèi),另兩條高與兩條直角邊重合;鈍角三角形最長(zhǎng)邊上的高在三角形內(nèi),另兩條高在三角形外。位置 三角形內(nèi)部 三角形內(nèi)部交于同一點(diǎn),位于三角形內(nèi),叫三角形的內(nèi)心交于同一點(diǎn),位于三角形內(nèi),叫三角形的重心交于同一點(diǎn),叫三角形的垂心:銳角三角形高的交點(diǎn)位于三角形內(nèi)部;直角三角形高的交點(diǎn)與直角頂點(diǎn)重合;鈍角三角形高的交點(diǎn)在三角形的外部。交點(diǎn)情況例:判斷對(duì)錯(cuò):(1)三角形的三條高在三角形的內(nèi)
15、部。( )(2)以三角形的頂點(diǎn)為端點(diǎn),且平分三角形內(nèi)角的射線叫做三角形的角平分線。( )(3)三角形的中線將三角形分為面積相等的兩個(gè)三角形。( )(4)三角形的三條角平分線和三條中線在三角形內(nèi)部或外部。( )注:1、畫任意一個(gè)三角形的三條高,對(duì)于初學(xué)者來講,有時(shí)會(huì)不太熟練,記住,要掌握好三角形的高的定義及位置情況,根據(jù)定義正確畫出三角形的高,口訣:“一靠二過三畫線”;2、要區(qū)分角的平分線和三角形角的平分線,前者是射線,后者是線段; 3、三角形的一條中線把三角形的面積一分為二(因?yàn)椤暗鹊椎雀叩娜切蚊娣e相等”),三角形的任意一條邊與該邊上的高的乘積的一半都等于這個(gè)三角形的面積,所以,有時(shí),題目中
16、出現(xiàn)了中線,或出現(xiàn)了高時(shí),一定要有從面積入手來解題的意識(shí)。 4、三角形的三條中線相交于一點(diǎn)(這點(diǎn)叫三角形的重心),且把原三角形分成面積相等的六個(gè)部分(即六個(gè)小三角形)。六、三角形的穩(wěn)定性三角形的三條邊固定,那么三角形的形狀和大小就完全確定了,這個(gè)性質(zhì)叫三角形的穩(wěn)定性。除了三角形外,其它的多邊形不具有穩(wěn)定性,但可以通過連接對(duì)角線,把多邊形轉(zhuǎn)化為若干個(gè)三角形,這個(gè)多邊形也就具有穩(wěn)定性了。多邊形要具有穩(wěn)定性,四邊形要添一條對(duì)角線,五邊形要添二條對(duì)角線 , n邊形要添(n-3)條對(duì)角線。七、三角形的內(nèi)角和定理三角形的內(nèi)角和等于180度。 要會(huì)利用平行線性質(zhì)、鄰補(bǔ)角、平角等相關(guān)知識(shí)推出三角形內(nèi)角和定理。
17、注:、已知三角形的兩個(gè)內(nèi)角度數(shù),可求出第三個(gè)角的度數(shù); 、等邊三角形的每一個(gè)內(nèi)角都等于60度;、如果已知等腰三角形的一個(gè)內(nèi)角等于60度,那么這個(gè)等腰三角形就是等邊三角形。 、三角形中,有“大角對(duì)大邊,大邊對(duì)大角”性質(zhì),即度數(shù)較大的角,所對(duì)的邊就較長(zhǎng),或較長(zhǎng)的邊,所對(duì)的角的度數(shù)較大。例:(1)已知等腰三角形的一個(gè)內(nèi)角等于70度,則另外兩個(gè)內(nèi)角的度數(shù)分別是多少度? (2)等腰三角形的一個(gè)外角是100,求這個(gè)三角形的三個(gè)內(nèi)角度數(shù)。八、三角形的外角及其性質(zhì)三角形的每一個(gè)內(nèi)角都有相鄰的兩個(gè)外角,且這兩個(gè)外角相等(對(duì)頂角相等)。一共有六個(gè)外角。其中,從與三角形的每一個(gè)內(nèi)角相鄰的兩個(gè)外角中各取一個(gè)外角相加(
18、一共三個(gè)外角相加),叫三角形的外角和。根據(jù)鄰補(bǔ)角、三角形的內(nèi)角和等相關(guān)知識(shí),可知:三角形的外角和 = 360 度。性質(zhì)1、三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角和。性質(zhì)2、三角形的一個(gè)外角大于任何一個(gè)與它不相鄰的內(nèi)角。(常用于解決角的不等關(guān)系問題)例:等腰三角形的一個(gè)外角等于100度,則這個(gè)等腰三角形的三個(gè)內(nèi)角分別是多少度?例:試用合適的方法說明五角星的五個(gè)頂角和等于180(圖自畫)注:(1)、ABC內(nèi)有一點(diǎn)O,連接BO、CO,則有BOC = A + ABO +ACO 圖略 (2)、ABC內(nèi)有一點(diǎn)M,連接BM、CM,BO、CO分別是ABM 和ACM的平分線,則有BOC =(A +BMC)/2
19、 (3)、一個(gè)五角星,五個(gè)頂角的和等于180度。(可利用性質(zhì)1和三角形的內(nèi)角和來加以證明)(4)、BO、CO分別是ABC的內(nèi)角平分線,BO、CO相交于點(diǎn)O,則BOC = 90+ A/2(5)、BO、CO分別是ABC的外角平分線,BO、CO相交于點(diǎn)O,則BOC = 90- A/2(6)、BO是ABC的內(nèi)角平分線,CO是ABC的外角平分線,BO、CO相交于點(diǎn)O,則BOC = A/2(7)、銳角三角形兩條邊上的高相交所成的夾角與第三邊所對(duì)的角互補(bǔ);直角三角形兩條邊上的高相交所成的夾角與第三邊所對(duì)的角相等;鈍角三角形一條鈍角邊上的高與鈍角所對(duì)最大邊上的高相交所成的夾角與另一鈍角邊所對(duì)的角相等,但若是兩
20、條鈍角邊上的高相交所成的夾角,則與第三邊所對(duì)的角互補(bǔ)。 請(qǐng)自行用合適的方法說明以上各點(diǎn)!九、多邊形及其內(nèi)角和、外角和1、概念:由不在同一直線上的一些線段首尾順次相接組成的平面圖形叫做多邊形。 三角形是最簡(jiǎn)單的多邊形。注:、多邊形分為凸多邊形 和 凹多邊形,我們初中階段只研究凸多邊形。凸多邊形:整個(gè)多邊形都在任何一條邊所在直線的同一側(cè),這樣的多邊形叫凸多邊形。、正多邊形:各個(gè)內(nèi)角都相等,各條邊都相等的多邊形叫正多邊形。(注:邊、角均相等兩條件缺一不可)、各邊都相等的多邊形不一定是正多邊形,例如菱形;各內(nèi)角都相等的多邊形不一定是正多邊形,例如矩形。2、多邊形的內(nèi)角和定理:n邊形內(nèi)角和等于:(n-2
21、)180 推導(dǎo)方法(1):由n邊形的一個(gè)頂點(diǎn)出發(fā),作n邊形的對(duì)角線,一共可以作(n-3)條對(duì)角線,這些對(duì)角線把原來的n邊形分成了(n-2)個(gè)三角形,由三角形的內(nèi)角和等于180,可得出該n邊形的內(nèi)角和為:(n-2)180推導(dǎo)方法(2):在n邊形的一邊上任取一點(diǎn),由這一點(diǎn)出發(fā),連接n邊形的各個(gè)頂點(diǎn)(與所取點(diǎn)相鄰的兩個(gè)頂點(diǎn)除外),一共可以作(n-2)條連接線段,這些線段把原來的n邊形分成了(n-1)個(gè)三角形,但卻多出了一個(gè)平角,所以,該n邊形的內(nèi)角和為:(n-1)180- 180= (n-2)180推導(dǎo)方法(3):在n邊形內(nèi)任取一點(diǎn),由這一點(diǎn)出發(fā),連接n邊形的各個(gè)頂點(diǎn),一共可以作n條連接線段,這些線
22、段把原來的n邊形分成了n個(gè)三角形,但中間卻多出了一個(gè)周角,所以,該n邊形的內(nèi)角和為:n 180- 360= (n-2)180注:、正n邊形的每一個(gè)內(nèi)角都等于(n-2)180/n 、多邊形的內(nèi)角和是180的整倍數(shù)。 、若多邊形的邊數(shù)增加n條,則它的內(nèi)角和增加n180 、若多邊形的邊數(shù)擴(kuò)大2倍,則它的內(nèi)角和增加n180 、若多邊形的邊數(shù)擴(kuò)大m倍,則它的內(nèi)角和增加(m-1)n180例:一個(gè)多邊形的所有內(nèi)角和其中一個(gè)外角的度數(shù)和是1335,這是個(gè)_邊形,這個(gè)外角為_度。 一個(gè)多邊形除了一個(gè)內(nèi)角外,其余內(nèi)角之和為1680,則這個(gè)多邊形是_邊形,這個(gè)內(nèi)角為_度。3、多邊形的外角和:多邊形的外角和是一個(gè)定值
23、,恒等于360。 指的是取多邊形每一個(gè)頂點(diǎn)處的一個(gè)外角相加的和,故n邊形的外角和指的是n個(gè)外角相加的和。 多邊形的外角和與邊數(shù)無關(guān)。注:、n邊形有n(n-3)/2 條對(duì)角線。 例:十邊形有10(10-3)/2 = 35 條對(duì)角線 、在運(yùn)用多邊形的內(nèi)角和公式與外角的性質(zhì)求值時(shí),常與方程思想相結(jié)合,運(yùn)用方程思想是解決本節(jié)運(yùn)算的常用方法。、在解決握手次數(shù)、通電話次數(shù)以及單循環(huán)賽比賽場(chǎng)數(shù)問題時(shí),可以建立多邊形模型,此類問題即為 多邊形的邊數(shù) + 對(duì)角線的條數(shù)例:、已知多邊形的每一個(gè)內(nèi)角都等于150,則這個(gè)多邊形的外角和是_,內(nèi)角和為_ 、一個(gè)多邊形的內(nèi)角和與某一個(gè)外角的度數(shù)總和為1350,則此多邊形為
24、_邊形。、一個(gè)多邊形除了一個(gè)內(nèi)角外,其余內(nèi)角之和為1680,則這個(gè)多邊形是_邊形。、已知ABC的兩邊分別與DEF的兩邊垂直,則ABC和DEF的大小關(guān)系是互補(bǔ) 或 相等。試畫圖說明。 、六個(gè)人去參加會(huì)議,要求每?jī)扇酥g要握一次手,那么這六個(gè)人共要握多少次手?(把六個(gè)人看作六個(gè)點(diǎn))十、鑲嵌 當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角加在一起恰好組成一個(gè)周角時(shí),就能拼成一個(gè)平面圖形。1、用同一種多邊形鑲嵌:這種多邊形可以不是正多邊形(例如三角形、長(zhǎng)方形、平行四邊形、菱形、梯形等),也可以是正多邊形(例如正三角形、正方形、正六邊形)。 三角形,四邊形均可單獨(dú)鑲嵌。2、用多種多邊形鑲嵌:則每種多邊形必須是正多
25、邊形。例如:3個(gè)正三角 + 2個(gè)正方形,4個(gè)正三角形 + 1個(gè)正六邊形,2個(gè)正三角形 + 2個(gè)正六邊形,1個(gè)正方形 + 2個(gè)正八邊形,2個(gè)正五邊形 + 1個(gè)正十邊形,1個(gè)正六邊形 + 2個(gè)正十二邊形,1個(gè)正三角形 + 1個(gè)正八邊形 + 1個(gè)正二十四邊形,1個(gè)正方形 + 1個(gè)正六邊形 + 1個(gè)正十二邊形,1個(gè)正三角形 + 2個(gè)正方形 + 1個(gè)正六邊形,如此等等。例:小明家需要購(gòu)買地板磚鋪房間地面,現(xiàn)有正三角形、正四邊形、正五邊形、正六邊形、正十二邊形這五種地板磚,則能有哪幾種選擇?第八章 二元一次方程組 一、二元一次方程組1、概念:二元一次方程:含有兩個(gè)未知數(shù),且未知數(shù)的指數(shù)(即次數(shù))都是1的方
26、程,叫二元一次方程。 二元一次方程組:兩個(gè)二元一次方程(或一個(gè)是一元一次方程,另一個(gè)是二元一次方程;或兩個(gè)都是一元一次方程;但未知數(shù)個(gè)數(shù)仍為兩個(gè))合在一起,就組成了二元一次方程組。2、二元一次方程的解和二元一次方程組的解: 使二元一次方程左右兩邊的值相等(即等式成立)的兩個(gè)未知數(shù)的值,叫二元一次方程的解。 使二元一次方程組的兩個(gè)方程左右兩邊的值都相等的兩個(gè)未知數(shù)的值,叫二元一次方程組的解。注:、因?yàn)槎淮畏匠毯袃蓚€(gè)未知數(shù),所以,二元一次方程的解是一組(對(duì))數(shù),用大括號(hào)聯(lián)立;、一個(gè)二元一次方程的解往往不是唯一的,而是有許多組;、而二元一次方程組的解是其中兩個(gè)二元一次方程的公共解,一般地,只有
27、唯一的一組,但也可能有無數(shù)組或無解(即無公共解)。二元一次方程組的解的討論:a1x + b1y = c1a2x + b2y = c2 已知二元一次方程組 、當(dāng)a1/a2 b1/b2 時(shí),有唯一解; 、當(dāng)a1/a2 = b1/b2 c1/c2時(shí),無解; 、當(dāng)a1/a2 = b1/b2 = c1/c2時(shí),有無數(shù)解。x + y = 42x + 2y = 8 x + y = 32x + 2y = 5 x + y = 43x - 5y = 9 例如:對(duì)應(yīng)方程組:、 、 、例:判斷下列方程組是否為二元一次方程組:x = 112x + 3y = 0 3t + 2s = 5ts + 6 = 0 x = 4y
28、= 5 a + b = 2b + c = 3 、 、 、 、 3、用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù): 用含X的代數(shù)式表示Y,就是先把X看成已知數(shù),把Y看成未知數(shù);用含Y的代數(shù)式表示X,則相當(dāng)于把Y看成已知數(shù),把X看成未知數(shù)。例:在方程 2x + 3y = 18 中,用含x的代數(shù)式表示y為:_,用含y的代數(shù)式表示x為:_。4、根據(jù)二元一次方程的定義求字母系數(shù)的值:要抓住兩個(gè)方面:、未知數(shù)的指數(shù)為1,、未知數(shù)前的系數(shù)不能為0例:已知方程 (a-2)x(/a/-1) (b+5)y(b2-24) = 3 是關(guān)于x、y的二元一次方程,求a、b的值。5、求二元一次方程的整數(shù)解例:求二元一次方程 3x
29、 + 4y = 18 的正整數(shù)解。思路:利用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的方法,可以求出方程有正整數(shù)解時(shí)x、y的取值范圍,然后再進(jìn)一步確定解。解:用含x的代數(shù)式表示y: y = 9/2 (3/4)x 用含y的代數(shù)式表示x: x = 6 (4/3)y 因?yàn)槭乔笳麛?shù)解,則:9/2 (3/4)x 0 , 6 (4/3)y 0所以,0 x 6 ,0 y 設(shè)元(設(shè)未知數(shù)) 根據(jù)數(shù)量關(guān)系式列出方程組 解方程組 檢驗(yàn)并作答(注意:此步驟不要忘記)2、列方程組解應(yīng)用題的常見題型: (1)、和差倍分問題:解這類問題的基本等量關(guān)系式是:較大量 - 較小量 = 相差量 ,總量 = 倍數(shù) 倍量; (2)、產(chǎn)
30、品配套問題:解這類題的基本等量關(guān)系式是:加工總量成比例; (3)、速度問題:解這類問題的基本關(guān)系式是:路程 = 速度 時(shí)間,包括相遇問題、追及問題等; (4)、航速問題:、順流(風(fēng)):航速 = 靜水(無風(fēng))時(shí)的速度 + 水(風(fēng))速; 、逆流(風(fēng)):航速 = 靜水(無風(fēng))時(shí)的速度 水(風(fēng))速; (5)、工程問題:解這類問題的基本關(guān)系式是:工作總量 = 工作效率工作時(shí)間,(有時(shí)需把工作總量看作1); (6)、增長(zhǎng)率問題:解這類問題的基本關(guān)系式是:原量(1+增長(zhǎng)率)= 增長(zhǎng)后的量,原量(1-減少率)= 減少后的量; (7)、盈虧問題:解這類問題的關(guān)鍵是從盈(過剩)、虧(不足)兩個(gè)角度來把握事物的總量
31、; (8)、數(shù)字問題:解這類問題,首先要正確掌握自然數(shù)、奇數(shù)、偶數(shù)等有關(guān)概念、特征及其表示; (9)、幾何問題:解這類問題的基本關(guān)系是有關(guān)幾何圖形的性質(zhì)、周長(zhǎng)、面積等計(jì)算公式; (10)、年齡問題:解這類問題的關(guān)鍵是抓住兩人年齡的增長(zhǎng)數(shù)相等。例1:一批水果運(yùn)往某地,第一批360噸,需用6節(jié)火車車廂加上15輛汽車,第二批440噸,需用8節(jié)火車車廂加上10輛汽車,求每節(jié)火車車廂與每輛汽車平均各裝多少噸?例2:甲、乙兩物體分別在周長(zhǎng)為400米的環(huán)形軌道上運(yùn)動(dòng),已知它們同時(shí)從一處背向出發(fā),25秒后相遇,若甲物體先從該處出發(fā),半分鐘后乙物體再?gòu)脑撎幫虺霭l(fā)追趕甲物體,則再過3分鐘后才趕上甲,假設(shè)甲、乙兩
32、物體的速度均不變,求甲、乙兩物體的速度。 例3:甲、乙二人分別以均勻速度在周長(zhǎng)為600米的圓形軌道上運(yùn)動(dòng),甲的速度比乙大,當(dāng)二人反向運(yùn)動(dòng)時(shí),每150秒相遇一次,當(dāng)二人同向運(yùn)動(dòng)時(shí),每10分鐘相遇一次,求二人的速度。例4:有兩種酒精溶液,甲種酒精溶液的酒精與水的比是3 :7,乙種酒精溶液的酒精與水的比是4 :1,今要得到酒精與水的比是3 :2的酒精溶液50kg,求甲、乙兩種溶液各取多少kg?例5:一張方桌由一個(gè)桌面和四條桌腿組成,如果1立方米木料可制成方桌桌面50個(gè),或制作桌腿300條,現(xiàn)有5立方米木料,請(qǐng)問,要用多少木料做桌面,多少木料做桌腿,能使桌面恰好配套?此時(shí),可以制成多少?gòu)埛阶???:某
33、人要在規(guī)定的時(shí)間內(nèi)由甲地趕往乙地,如果他以每小時(shí)50千米的速度行駛,就會(huì)遲到24分鐘,如果他以每小時(shí)75千米的速度行駛,則可提前24分鐘到達(dá)乙地,求甲、乙兩地間的距離。農(nóng)作物品種每公頃需勞動(dòng)力每公頃需投入資金水稻4人1萬元棉花8人1萬元蔬菜5人2萬元例7:某農(nóng)場(chǎng)有300名職工耕種51公頃土地,計(jì)劃種植水稻、棉花、蔬菜三種農(nóng)作物,已知種植各種農(nóng)作物每公頃所需勞動(dòng)力人數(shù)及投入資金如右表:已知該農(nóng)場(chǎng)計(jì)劃投入資金67萬元,應(yīng)該怎樣安排這三種農(nóng)作物的種植面積才能使所有職工都有工作而且投入資金正好夠用?例8:某酒店的客房有三人間和兩人間兩種,三人間每人每天25元,兩人間每人每天35元,一個(gè)50人的旅游團(tuán)到
34、該酒店租了若干間客房,且每間客房恰好住滿,一天共花去1510元,求兩種客房各租了多少間?年級(jí)捐款數(shù)額(元)捐助貧困中學(xué)生人數(shù)(名)捐助貧困小學(xué)生人數(shù)(名)初一年級(jí)400024初二年級(jí)420033初三年級(jí)7400例9:某山區(qū)有23名中、小學(xué)生因貧困失學(xué)需要捐助,資助一名中學(xué)生的學(xué)習(xí)費(fèi)用需要a元,資助一名小學(xué)生的學(xué)習(xí)費(fèi)用需要b元。某校學(xué)生積極捐款,初中各年級(jí)學(xué)生捐款數(shù)額與使用這些捐款恰好資助受捐助中學(xué)生和小學(xué)生人數(shù)的部分情況如右表:(1)、求a、b的值;(2)初三年級(jí)的捐款解決了其余貧困中小學(xué)生的學(xué)習(xí)費(fèi)用,請(qǐng)分別計(jì)算出初三年級(jí)的捐款所資助的中學(xué)生和小學(xué)生人數(shù)。第九章 不等式與不等式組 一、不等式1
35、、概念:利用不等符號(hào)連接的式子叫不等式。 不等符號(hào)有:、 注:有些不等式中不含有未知數(shù),有些不等式中含有未知數(shù)。要與方程加以區(qū)別。方程:含有未知數(shù)的等式叫方程。 一些關(guān)鍵字詞:不大于 不超過 不小于 至少 超過 最多 不是正數(shù) 非負(fù)數(shù) 不是負(fù)數(shù) 非正數(shù) 負(fù)數(shù) 對(duì)應(yīng)符號(hào)為:( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( )2、一元一次不等式:含有一個(gè)未知數(shù),且未知數(shù)的次數(shù)是1的不等式,叫一元一次不等式。不等式的解集:能使不等式成立的未知數(shù)的取值范圍,叫這個(gè)不等式的解的集合,簡(jiǎn)稱解集。 而求不等式解集的過程叫做 解不等式。例:下列哪個(gè)數(shù)不是不等式5x36的解 ( )
36、 A、1 B、2 C、-1 D、-23、不等式的性質(zhì):性質(zhì) 、不等式左右兩邊加(減)同一個(gè)數(shù)(式),不等式仍然成立(不等號(hào)的方向不變);性質(zhì) 、不等式左右兩邊乘以(除以)同一個(gè)正數(shù),不等式仍然成立(不等號(hào)的方向不變);性質(zhì) 、不等式左右兩邊乘以(除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。注:不等式左右兩邊同乘或同除以一個(gè)數(shù)或已知符號(hào)的式子時(shí),這個(gè)數(shù)或式子的值絕對(duì)不能是零,否則無意義;注意要與等式的性質(zhì)相區(qū)別:最大區(qū)別就是 不等式兩邊同時(shí)乘以或除以一個(gè)負(fù)數(shù)時(shí),不等號(hào)要改變方向。十二個(gè)例題:、如果ab,可知下面哪個(gè)不等式成立 ( ) A、-a-b B、1/a1/b C、a+b2b D、aab、如果ba0,則下列哪個(gè)不等式是正確的 ( ) A、bab B、aba C、2b2a D、-2b-2a、若ab0,則下列不等式成立的是 ( ) A、1/a1/b B、abb C、aab D、ab、a為實(shí)數(shù),下列結(jié)論正確的是 ( ) A、a0 B、如果a0,那么a0 C、若xx, 則x0 D、如果a1,那么aa、如果x0,a為實(shí)數(shù),那么一定有 ( ) A、x+a0 B、x-a0 C、-ax D、-xa、ab0,則下列不等式錯(cuò)誤的是 ( ) A、-a-b B、1/a1/b0 C、a-bb-a D、a/bb/a、若a0,b0,a+b0,則a、-a、b、-b的大小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 25320.4-2024電力系統(tǒng)管理及其信息交換數(shù)據(jù)和通信安全第4部分:包含MMS的協(xié)議集及其附件
- GB/T 45159.3-2024機(jī)械振動(dòng)與沖擊黏彈性材料動(dòng)態(tài)力學(xué)性能的表征第3部分:懸臂剪切梁法
- GB/T 45205-2024經(jīng)營(yíng)者公平競(jìng)爭(zhēng)合規(guī)管理規(guī)范
- Lactofen-生命科學(xué)試劑-MCE-2687
- Dityrosine-dihydrochloride-Bityrosine-dihydrochloride-生命科學(xué)試劑-MCE-2022
- 2025年度酒店安全管理責(zé)任免除協(xié)議書模板
- 二零二五年度房地產(chǎn)項(xiàng)目財(cái)務(wù)風(fēng)險(xiǎn)評(píng)估顧問協(xié)議
- 二零二五年度特色茶餐廳員工勞動(dòng)保障合同
- 二零二五年度荒山承包與植被種植一體化合同
- 施工現(xiàn)場(chǎng)施工圖紙會(huì)審制度
- 氫氣-安全技術(shù)說明書MSDS
- 《AP內(nèi)容介紹》課件
- 醫(yī)生定期考核簡(jiǎn)易程序述職報(bào)告范文(10篇)
- 市政工程人員績(jī)效考核制度
- 公園景區(qū)安全生產(chǎn)
- 安全創(chuàng)新創(chuàng)效
- 《中國(guó)糖尿病防治指南(2024版)》更新要點(diǎn)解讀
- 初級(jí)創(chuàng)傷救治課件
- 《處理人際關(guān)系》課件
- TSGD7002-2023-壓力管道元件型式試驗(yàn)規(guī)則
- 2022版義務(wù)教育英語課程標(biāo)準(zhǔn)整體解讀課件
評(píng)論
0/150
提交評(píng)論