球的組合體問(wèn)題教師版_第1頁(yè)
球的組合體問(wèn)題教師版_第2頁(yè)
球的組合體問(wèn)題教師版_第3頁(yè)
球的組合體問(wèn)題教師版_第4頁(yè)
球的組合體問(wèn)題教師版_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、高頻考點(diǎn) 球的組合體問(wèn)題題型1:球的截面問(wèn)題說(shuō)明:涉及到球的截面的問(wèn)題,總是使用關(guān)系式解題,我們可以通過(guò)兩個(gè)量求第三個(gè)量,也可能是抓三個(gè)量之間的其它關(guān)系,求三個(gè)量1.平面截球O的球面所得圓的半徑為1,球心O到平面的距離為,則此球的體積為 (A) (B)4 (C)4 (D)6【答案】B2.在球心同側(cè)有相距的兩個(gè)平行截面,它們的面積分別為和求球的表面積解:如圖為球的軸截面,由球的截面性質(zhì)知,且若、分別為兩截面圓的圓心,則,設(shè)球的半徑為,同理,設(shè),則在中,;在中,解得,球的表面積為3.球面上有三點(diǎn)、組成這個(gè)球的一個(gè)截面的內(nèi)接三角形三個(gè)頂點(diǎn),其中,、,球心到這個(gè)截面的距離為球半徑的一半,求球的表面積分

2、析:求球的表面積的關(guān)鍵是求球的半徑,本題的條件涉及球的截面,是截面的內(nèi)接三角形,由此可利用三角形求截面圓的半徑,球心到截面的距離為球半徑的一半,從而可由關(guān)系式求出球半徑解:,是以為斜邊的直角三角形的外接圓的半徑為,即截面圓的半徑,又球心到截面的距離為,得球的表面積為4如圖,有一個(gè)水平放置的透明無(wú)蓋的正方體容器,容器高8cm,將一個(gè)球放在容器口,再向容器內(nèi)注水,當(dāng)球面恰好接觸水面時(shí)測(cè)得水深為6cm,如果不計(jì)容器的厚度,則球的體積為 ()ABCD【答案】A 題型2:球與幾何體的切、接問(wèn)題 正方體棱長(zhǎng)為,則其內(nèi)切球半徑= ;棱切球半徑= ;外接球半徑= 長(zhǎng)方體長(zhǎng)寬高分別為,則其外接球半徑=_正四面體

3、棱長(zhǎng)為,則其內(nèi)切球半徑=_;外接球半徑=_CBADSOE.求球與它的外切圓柱、外切等邊圓錐的體積之比分析:首先畫(huà)出球及它的外切圓柱、等邊圓錐,它們公共的軸截面,然后尋找?guī)缀误w與幾何體之間元素的關(guān)系解:如圖,等邊為圓錐的軸截面,此截面截圓柱得正方形,截球面得球的大圓圓設(shè)球的半徑,則它的外切圓柱的高為,底面半徑為;, , ,1.設(shè)長(zhǎng)方體的長(zhǎng)、寬、高分別為,其頂點(diǎn)都在一個(gè)球面上,則該球的表面積為 (A) (B) (C) (D) 【答案】B【解析】本題考查長(zhǎng)方體的外接球問(wèn)題.練1.一個(gè)長(zhǎng)方體的各頂點(diǎn)均在同一球的球面上,且一個(gè)頂點(diǎn)上的三條棱的長(zhǎng)分別為1,2,3,則此球的表面積為練2.若三棱錐的三個(gè)側(cè)面兩

4、兩垂直,且側(cè)棱長(zhǎng)均為,則其外接球的表面積是 .:練3已知三棱柱的6個(gè)頂點(diǎn)都在球的球面上,則球的半徑為()ABCD 【答案】C 2已知一個(gè)正方體的所有頂點(diǎn)在一個(gè)球面上. 若球的體積為, 則正方體的棱長(zhǎng)為 _.【答案】 3.過(guò)球表面上一點(diǎn)引三條長(zhǎng)度相等的弦、,且兩兩夾角都為,若球半徑為,求弦的長(zhǎng)度由條件可抓住是正四面體,、為球上四點(diǎn),則球心在正四面體中心,設(shè),則截面與球心的距離,過(guò)點(diǎn)、的截面圓半徑,所以得4.正三棱錐的高為1,底面邊長(zhǎng)為,正三棱錐內(nèi)有一個(gè)球與其四個(gè)面相切求球的表面積與體積解:如圖,球是正三棱錐的內(nèi)切球,到正三棱錐四個(gè)面的距離都是球的半徑是正三棱錐的高,即是邊中點(diǎn),在上,的邊長(zhǎng)為,

5、可以得到 由等體積法, 得:, 說(shuō)明:球心是決定球的位置關(guān)鍵點(diǎn),本題利用球心到正三棱錐四個(gè)面的距離相等且為球半徑來(lái)求出,以球心的位置特點(diǎn)來(lái)抓球的基本量,這是解決球有關(guān)問(wèn)題常用的方法5.【2012高考新課標(biāo)理11】已知三棱錐的所有頂點(diǎn)都在球的球面上,是邊長(zhǎng)為的正三角形,為球的直徑,且;則此棱錐的體積為( ) 【答案】A【解析】的外接圓的半徑,點(diǎn)到面的距離,為球的直徑點(diǎn)到面的距離為 此棱錐的體積為 另:排除,選A.6(2013年高考課標(biāo)卷(文)已知正四棱錐O-ABCD的體積為322,底面邊長(zhǎng)為3,則以O(shè)為球心,OA為半徑的球的表面積為_(kāi).【答案】 7.已知矩形的頂點(diǎn)都在半徑為4的球的球面上,且,則

6、棱錐的體積為 。8已知兩個(gè)圓錐有公共底面,且兩圓錐的頂點(diǎn)和底面的圓周都在同一個(gè)球面上若圓錐底面面積是這個(gè)球面面積的,則這兩個(gè)圓錐中,體積較小者的高與體積較大者的高的比值為_(kāi)9把四個(gè)半徑都是1的球中的三個(gè)放在桌面上,使它兩兩外切,然后在它們上面放上第四個(gè)球,使它與前三個(gè)都相切,求第四個(gè)球的最高點(diǎn)與桌面的距離分析:關(guān)鍵在于能根據(jù)要求構(gòu)造出相應(yīng)的幾何體,由于四個(gè)球半徑相等,故四個(gè)球一定組成正四面體的四個(gè)頂點(diǎn)且正四面體的棱長(zhǎng)為兩球半徑之和2解:四球心組成棱長(zhǎng)為2的正四面體的四個(gè)頂點(diǎn),則正四面體的高而第四個(gè)球的最高點(diǎn)到第四個(gè)球的球心距離為求的半徑1,且三個(gè)球心到桌面的距離都為1,故第四個(gè)球的最高點(diǎn)與桌面

7、的距離為正三棱柱內(nèi)接于半徑為的球,若兩點(diǎn)的球面距離為,則正三棱柱的體積為 8(2009年理科)5.12已知球的直徑SC=4,A,B是該球球面上的兩點(diǎn),AB=,則棱錐SABC的體積為 C (2011年理科)A B CD1圖3圖4圖5二、球與棱柱的組合體問(wèn)題1 正方體的內(nèi)切球:球與正方體的每個(gè)面都相切,切點(diǎn)為每個(gè)面的中心,顯然球心為正方體的中心。設(shè)正方體的棱長(zhǎng)為,球半徑為。如圖3,截面圖為正方形的內(nèi)切圓,得;2 與正方體各棱相切的球:球與正方體的各棱相切,切點(diǎn)為各棱的中點(diǎn),如圖4作截面圖,圓為正方形的外接圓,易得。3 正方體的外接球:正方體的八個(gè)頂點(diǎn)都在球面上,如圖5,以對(duì)角面作截面圖得,圓為矩形

8、的外接圓,易得。例3.在球面上有四個(gè)點(diǎn)、.如果、兩兩互相垂直,且,那么這個(gè)球的表面積是_.解:由已知可得、實(shí)際上就是球內(nèi)接正方體中交于一點(diǎn)的三條棱,正方體的對(duì)角線長(zhǎng)就是球的直徑,連結(jié)過(guò)點(diǎn)的一條對(duì)角線,則過(guò)球心,對(duì)角線練習(xí):一棱長(zhǎng)為的框架型正方體,內(nèi)放一能充氣吹脹的氣球,求當(dāng)球與正方體棱適好接觸但又不至于變形時(shí)的球的體積。(答案為)4構(gòu)造直三角形,巧解正棱柱與球的組合問(wèn)題正棱柱的外接球,其球心定在上下底面中心連線的中點(diǎn)處,由球心、底面中心及底面一頂點(diǎn)構(gòu)成的直角三角形便可得球半徑。例4.已知三棱柱的六個(gè)頂點(diǎn)在球上,又知球與此正三棱柱的5個(gè)面都相切,求球與球的體積之比與表面積之比。分析:先畫(huà)出過(guò)球心的截面圖,再來(lái)探求半徑之間的關(guān)系。圖6解:如圖6,由題意得兩球心、是重合的,過(guò)正三棱柱的一條側(cè)棱和它們的球心作截面,設(shè)正三棱柱底面邊長(zhǎng)為,則,正三棱柱的高為,由中,得,練習(xí):正四棱柱的各頂點(diǎn)都在半徑為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論