人教版八年級(jí)數(shù)學(xué)下冊全套教案 全冊_第1頁
人教版八年級(jí)數(shù)學(xué)下冊全套教案 全冊_第2頁
人教版八年級(jí)數(shù)學(xué)下冊全套教案 全冊_第3頁
人教版八年級(jí)數(shù)學(xué)下冊全套教案 全冊_第4頁
人教版八年級(jí)數(shù)學(xué)下冊全套教案 全冊_第5頁
已閱讀5頁,還剩96頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、第十六章 分式161分式16.1.1從分?jǐn)?shù)到分式一、 教學(xué)目標(biāo)1 了解分式、有理式的概念.2理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.二、重點(diǎn)、難點(diǎn)1重點(diǎn):理解分式有意義的條件,分式的值為零的條件.2難點(diǎn):能熟練地求出分式有意義的條件,分式的值為零的條件.3.認(rèn)知難點(diǎn)與突破方法難點(diǎn)是能熟練地求出分式有意義的條件,分式的值為零的條件.突破難點(diǎn)的方法是利用分式與分?jǐn)?shù)有許多類似之處,從分?jǐn)?shù)入手,研究出分式的有關(guān)概念,同時(shí)還要講清分式與分?jǐn)?shù)的聯(lián)系與區(qū)別.三、例、習(xí)題的意圖分析本章從實(shí)際問題引出分式方程=,給出分式的描述性的定義:像這樣分母中含有字母的式

2、子屬于分式. 不要在列方程時(shí)耽誤時(shí)間,列方程在這節(jié)課里不是重點(diǎn),也不要求解這個(gè)方程.1本節(jié)進(jìn)一步提出p4思考讓學(xué)生自己依次填出:,.為下面的觀察提供具體的式子,就以上的式子,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?可以發(fā)現(xiàn),這些式子都像分?jǐn)?shù)一樣都是 (即a÷b)的形式.分?jǐn)?shù)的分子a與分母b都是整數(shù),而這些式子中的a、b都是整式,并且b中都含有字母.p5歸納順理成章地給出了分式的定義.分式與分?jǐn)?shù)有許多類似之處,研究分式往往要類比分?jǐn)?shù)的有關(guān)概念,所以要引導(dǎo)學(xué)生了解分式與分?jǐn)?shù)的聯(lián)系與區(qū)別.希望老師注意:分式比分?jǐn)?shù)更具有一般性,例如分式 可以表示為兩個(gè)整式相除的商(除式不能為零),其中

3、包括所有的分?jǐn)?shù) .2 p5思考引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分?jǐn)?shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個(gè)條件,分式才有意義.即當(dāng)b0時(shí),分式 才有意義.3 p5例1填空是應(yīng)用分式有意義的條件分母不為零,解出字母x的值.還可以利用這道題,不改變分式,只把題目改成“分式無意義”,使學(xué)生比較全面地理解分式及有關(guān)的概念,也為今后求函數(shù)的自變量的取值范圍,打下良好的基礎(chǔ).4 p12拓廣探索中第13題提到了“在什么條件下,分式的值為0?”,下面補(bǔ)充的例2為了學(xué)生更全面地體驗(yàn)分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件:分母不能為零;分子

4、為零.這兩個(gè)條件得到的解集的公共部分才是這一類題目的解.四、課堂引入1讓學(xué)生填寫p4思考,學(xué)生自己依次填出:,.2學(xué)生看p3的問題:一艘輪船在靜水中的最大航速為20千米/時(shí),它沿江以最大航速順流航行100千米所用實(shí)踐,與以最大航速逆流航行60千米所用時(shí)間相等,江水的流速為多少?請同學(xué)們跟著教師一起設(shè)未知數(shù),列方程.設(shè)江水的流速為x千米/時(shí).輪船順流航行100千米所用的時(shí)間為小時(shí),逆流航行60千米所用時(shí)間小時(shí),所以=.3. 以上的式子,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?五、例題講解p5例1. 當(dāng)x為何值時(shí),分式有意義.分析已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解出字母x的

5、取值范圍. 提問如果題目為:當(dāng)x為何值時(shí),分式無意義.你知道怎么解題嗎?這樣可以使學(xué)生一題二用,也可以讓學(xué)生更全面地感受到分式及有關(guān)概念.(補(bǔ)充)例2. 當(dāng)m為何值時(shí),分式的值為0?(1) (2) (3) 分析 分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件:分母不能為零;分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解. 答案 (1)m=0 (2)m=2 (3)m=1六、隨堂練習(xí)1判斷下列各式哪些是整式,哪些是分式?9x+4, , , , ,2. 當(dāng)x取何值時(shí),下列分式有意義? (1) (2) (3)3. 當(dāng)x為何值時(shí),分式的值為0?(1) (2) (3) 七、課后練習(xí)1.列代數(shù)式表示下列數(shù)

6、量關(guān)系,并指出哪些是正是?哪些是分式? (1)甲每小時(shí)做x個(gè)零件,則他8小時(shí)做零件 個(gè),做80個(gè)零件需 小時(shí).(2)輪船在靜水中每小時(shí)走a千米,水流的速度是b千米/時(shí),輪船的順流速度是 千米/時(shí),輪船的逆流速度是 千米/時(shí).(3)x與y的差于4的商是 .2當(dāng)x取何值時(shí),分式 無意義?3. 當(dāng)x為何值時(shí),分式 的值為0?八、答案:六、1.整式:9x+4, , 分式: , ,2(1)x-2 (2)x (3)x±2 3(1)x=-7 (2)x=0 (3)x=-1七、118x, ,a+b, ,; 整式:8x, a+b, ; 分式:, 2 x = 3. x=-116.1.2分式的基本性質(zhì)一、教

7、學(xué)目標(biāo)1理解分式的基本性質(zhì). 2會(huì)用分式的基本性質(zhì)將分式變形.二、重點(diǎn)、難點(diǎn)1重點(diǎn): 理解分式的基本性質(zhì).2難點(diǎn): 靈活應(yīng)用分式的基本性質(zhì)將分式變形.3.認(rèn)知難點(diǎn)與突破方法教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形. 突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形.三、例、習(xí)題的意圖分析1p7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變.2p9的

8、例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分.值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個(gè)分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的最高次冪的積,作為最簡公分母.教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對相應(yīng)概念及方法的理解.3p11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變.“不改變分式的值,使分式的分子和分母都不含-號(hào)”是分式的基本性質(zhì)的應(yīng)用

9、之一,所以補(bǔ)充例5.四、課堂引入1請同學(xué)們考慮: 與 相等嗎? 與 相等嗎?為什么?2說出 與 之間變形的過程, 與 之間變形的過程,并說出變形依據(jù)? 3提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì).五、例題講解p7例2.填空:分析應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變.p11例3約分:分析 約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡分式.p11例4通分:分析 通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的最高次冪的積,作為最簡公分母.(補(bǔ)充)例5.

10、不改變分式的值,使下列分式的分子和分母都不含“-”號(hào). , , , , 。分析每個(gè)分式的分子、分母和分式本身都有自己的符號(hào),其中兩個(gè)符號(hào)同時(shí)改變,分式的值不變.解:= , =,=, = , =。六、隨堂練習(xí)1填空:(1) = (2) = (3) = (4) =2約分:(1) (2) (3) (4)3通分:(1)和 (2)和 (3)和 (4)和4不改變分式的值,使下列分式的分子和分母都不含“-”號(hào). (1) (2) (3) (4) 七、課后練習(xí)1判斷下列約分是否正確:(1)= (2)=(3)=02通分:(1)和 (2)和3不改變分式的值,使分子第一項(xiàng)系數(shù)為正,分式本身不帶“-”號(hào).(1) (2)

11、 八、答案:六、1(1)2x (2) 4b (3) bn+n (4)x+y 2(1) (2) (3) (4)-2(x-y)23通分:(1)= , = (2)= , = (3)= = (4)= =4(1) (2) (3) (4) 162分式的運(yùn)算1621分式的乘除(一)一、教學(xué)目標(biāo):理解分式乘除法的法則,會(huì)進(jìn)行分式乘除運(yùn)算.二、重點(diǎn)、難點(diǎn)1重點(diǎn):會(huì)用分式乘除的法則進(jìn)行運(yùn)算.2難點(diǎn):靈活運(yùn)用分式乘除的法則進(jìn)行運(yùn)算 .3. 難點(diǎn)與突破方法分式的運(yùn)算以有理數(shù)和整式的運(yùn)算為基礎(chǔ),以因式分解為手段,經(jīng)過轉(zhuǎn)化后往經(jīng)過轉(zhuǎn)化后往往可視為整式的運(yùn)算.分式的乘除的法則和運(yùn)算順序可類比分?jǐn)?shù)的有關(guān)內(nèi)容得到.所以,教給學(xué)

12、生類比的數(shù)學(xué)思想方法能較好地實(shí)現(xiàn)新知識(shí)的轉(zhuǎn)化.只要做到這一點(diǎn)就可充分發(fā)揮學(xué)生的主體性,使學(xué)生主動(dòng)獲取知識(shí).教師要重點(diǎn)處理分式中有別于分?jǐn)?shù)運(yùn)算的有關(guān)內(nèi)容,使學(xué)生規(guī)范掌握,特別是運(yùn)算符號(hào)的問題,要抓住出現(xiàn)的問題認(rèn)真落實(shí).三、例、習(xí)題的意圖分析1p13本節(jié)的引入還是用問題1求容積的高,問題2求大拖拉機(jī)的工作效率是小拖拉機(jī)的工作效率的多少倍,這兩個(gè)引例所得到的容積的高是,大拖拉機(jī)的工作效率是小拖拉機(jī)的工作效率的倍.引出了分式的乘除法的實(shí)際存在的意義,進(jìn)一步引出p14觀察從分?jǐn)?shù)的乘除法引導(dǎo)學(xué)生類比出分式的乘除法的法則.但分析題意、列式子時(shí),不易耽誤太多時(shí)間.2p14例1應(yīng)用分式的乘除法法則進(jìn)行計(jì)算,注意

13、計(jì)算的結(jié)果如能約分,應(yīng)化簡到最簡.3p14例2是較復(fù)雜的分式乘除,分式的分子、分母是多項(xiàng)式,應(yīng)先把多項(xiàng)式分解因式,再進(jìn)行約分.4p14例3是應(yīng)用題,題意也比較容易理解,式子也比較容易列出來,但要注意根據(jù)問題的實(shí)際意義可知a>1,因此(a-1)2=a2-2a+1<a2-2+1,即(a-1)2<a2-1.這一點(diǎn)要給學(xué)生講清楚,才能分析清楚“豐收2號(hào)”單位面積產(chǎn)量高.(或用求差法比較兩代數(shù)式的大小)四、課堂引入1.出示p13本節(jié)的引入的問題1求容積的高,問題2求大拖拉機(jī)的工作效率是小拖拉機(jī)的工作效率的倍.引入從上面的問題可知,有時(shí)需要分式運(yùn)算的乘除.本節(jié)我們就討論數(shù)量關(guān)系需要進(jìn)行分

14、式的乘除運(yùn)算.我們先從分?jǐn)?shù)的乘除入手,類比出分式的乘除法法則.1 p14觀察 從上面的算式可以看到分式的乘除法法則.3提問 p14思考類比分?jǐn)?shù)的乘除法法則,你能說出分式的乘除法法則?類似分?jǐn)?shù)的乘除法法則得到分式的乘除法法則的結(jié)論.五、例題講解p14例1.分析這道例題就是直接應(yīng)用分式的乘除法法則進(jìn)行運(yùn)算.應(yīng)該注意的是運(yùn)算結(jié)果應(yīng)約分到最簡,還應(yīng)注意在計(jì)算時(shí)跟整式運(yùn)算一樣,先判斷運(yùn)算符號(hào),在計(jì)算結(jié)果.p15例2. 分析 這道例題的分式的分子、分母是多項(xiàng)式,應(yīng)先把多項(xiàng)式分解因式,再進(jìn)行約分.結(jié)果的分母如果不是單一的多項(xiàng)式,而是多個(gè)多項(xiàng)式相乘是不必把它們展開.p15例. 分析這道應(yīng)用題有兩問,第一問是:

15、哪一種小麥的單位面積產(chǎn)量最高?先分別求出“豐收1號(hào)”、“豐收2號(hào)”小麥試驗(yàn)田的面積,再分別求出“豐收1號(hào)”、“豐收2號(hào)”小麥試驗(yàn)田的單位面積產(chǎn)量,分別是、,還要判斷出以上兩個(gè)分式的值,哪一個(gè)值更大.要根據(jù)問題的實(shí)際意義可知a>1,因此(a-1)2=a2-2a+1<a2-2+1,即(a-1)2<a2-1,可得出“豐收2號(hào)”單位面積產(chǎn)量高.六、隨堂練習(xí)計(jì)算(1) (2) (3) (4)-8xy (5) (6) 七、課后練習(xí)計(jì)算(1) (2) (3) (4) (5) (6) 八、答案:六、(1)ab (2) (3) (4)-20x2 (5)(6)七、(1) (2) (3) (4)

16、(5) (6)1621分式的乘除(二)一、教學(xué)目標(biāo):熟練地進(jìn)行分式乘除法的混合運(yùn)算.二、重點(diǎn)、難點(diǎn)1重點(diǎn):熟練地進(jìn)行分式乘除法的混合運(yùn)算.2難點(diǎn):熟練地進(jìn)行分式乘除法的混合運(yùn)算.3認(rèn)知難點(diǎn)與突破方法:緊緊抓住分式乘除法的混合運(yùn)算先統(tǒng)一成為乘法運(yùn)算這一點(diǎn),然后利用上節(jié)課分式乘法運(yùn)算的基礎(chǔ),達(dá)到熟練地進(jìn)行分式乘除法的混合運(yùn)算的目的.課堂練習(xí)以學(xué)生自己討論為主,教師可組織學(xué)生對所做的題目作自我評(píng)價(jià),關(guān)鍵是點(diǎn)撥運(yùn)算符號(hào)問題、變號(hào)法則.三、例、習(xí)題的意圖分析1 p17頁例4是分式乘除法的混合運(yùn)算. 分式乘除法的混合運(yùn)算先把除法統(tǒng)一成乘法運(yùn)算,再把分子、分母中能因式分解的多項(xiàng)式分解因式,最后進(jìn)行約分,注意

17、最后的結(jié)果要是最簡分式或整式.教材p17例4只把運(yùn)算統(tǒng)一乘法,而沒有把25x2-9分解因式,就得出了最后的結(jié)果,教師在見解是不要跳步太快,以免學(xué)習(xí)有困難的學(xué)生理解不了,造成新的疑點(diǎn).2, p17頁例4中沒有涉及到符號(hào)問題,可運(yùn)算符號(hào)問題、變號(hào)法則是學(xué)生學(xué)習(xí)中重點(diǎn),也是難點(diǎn),故補(bǔ)充例題,突破符號(hào)問題. 四、課堂引入計(jì)算(1) (2) 五、例題講解(p17)例4.計(jì)算分析 是分式乘除法的混合運(yùn)算. 分式乘除法的混合運(yùn)算先統(tǒng)一成為乘法運(yùn)算,再把分子、分母中能因式分解的多項(xiàng)式分解因式,最后進(jìn)行約分,注意最后的計(jì)算結(jié)果要是最簡的. (補(bǔ)充)例.計(jì)算 (1) = (先把除法統(tǒng)一成乘法運(yùn)算)= (判斷運(yùn)算的

18、符號(hào))= (約分到最簡分式)(2) = (先把除法統(tǒng)一成乘法運(yùn)算)= (分子、分母中的多項(xiàng)式分解因式)= =六、隨堂練習(xí)計(jì)算(1) (2)(3) (4)七、課后練習(xí)計(jì)算(1) (2)(3) (4)八、答案:六.(1) (2) (3) (4)-y七. (1) (2) (3) (4)1621分式的乘除(三)一、教學(xué)目標(biāo):理解分式乘方的運(yùn)算法則,熟練地進(jìn)行分式乘方的運(yùn)算.二、重點(diǎn)、難點(diǎn)1重點(diǎn):熟練地進(jìn)行分式乘方的運(yùn)算.2難點(diǎn):熟練地進(jìn)行分式乘、除、乘方的混合運(yùn)算.3認(rèn)知難點(diǎn)與突破方法 講解分式乘方的運(yùn)算法則之前,根據(jù)乘方的意義和分式乘法的法則,計(jì)算 =,=,n個(gè)n個(gè)順其自然地推導(dǎo)可得:n個(gè)n個(gè)=,即

19、=. (n為正整數(shù))歸納出分式乘方的法則:分式乘方要把分子、分母分別乘方.三、例、習(xí)題的意圖分析1 p17例5第(1)題是分式的乘方運(yùn)算,它與整式的乘方一樣應(yīng)先判斷乘方的結(jié)果的符號(hào),在分別把分子、分母乘方.第(2)題是分式的乘除與乘方的混合運(yùn)算,應(yīng)對學(xué)生強(qiáng)調(diào)運(yùn)算順序:先做乘方,再做乘除.2教材p17例5中象第(1)題這樣的分式的乘方運(yùn)算只有一題,對于初學(xué)者來說,練習(xí)的量顯然少了些,故教師應(yīng)作適當(dāng)?shù)难a(bǔ)充練習(xí).同樣象第(2)題這樣的分式的乘除與乘方的混合運(yùn)算,也應(yīng)相應(yīng)的增加幾題為好.分式的乘除與乘方的混合運(yùn)算是學(xué)生學(xué)習(xí)中重點(diǎn),也是難點(diǎn),故補(bǔ)充例題,強(qiáng)調(diào)運(yùn)算順序,不要盲目地跳步計(jì)算,提高正確率,突破

20、這個(gè)難點(diǎn). 四、課堂引入計(jì)算下列各題:(1)=( ) (2) =( ) (3)=( ) 提問由以上計(jì)算的結(jié)果你能推出(n為正整數(shù))的結(jié)果嗎?五、例題講解(p17)例5.計(jì)算分析第(1)題是分式的乘方運(yùn)算,它與整式的乘方一樣應(yīng)先判斷乘方的結(jié)果的符號(hào),再分別把分子、分母乘方.第(2)題是分式的乘除與乘方的混合運(yùn)算,應(yīng)對學(xué)生強(qiáng)調(diào)運(yùn)算順序:先做乘方,再做乘除.六、隨堂練習(xí)1判斷下列各式是否成立,并改正.(1)= (2)= (3)= (4)=2計(jì)算(1) (2) (3) (4) 5) (6)七、課后練習(xí)計(jì)算(1) (2) (3) (4) 八、答案:六、1. (1)不成立,= (2)不成立,= (3)不成

21、立,= (4)不成立,=2. (1) (2) (3) (4) (5) (6)七、(1) (2) (3) (4)1622分式的加減(一)一、教學(xué)目標(biāo):(1)熟練地進(jìn)行同分母的分式加減法的運(yùn)算. (2)會(huì)把異分母的分式通分,轉(zhuǎn)化成同分母的分式相加減.二、重點(diǎn)、難點(diǎn)1重點(diǎn):熟練地進(jìn)行異分母的分式加減法的運(yùn)算.2難點(diǎn):熟練地進(jìn)行異分母的分式加減法的運(yùn)算.3認(rèn)知難點(diǎn)與突破方法進(jìn)行異分母的分式加減法的運(yùn)算是難點(diǎn),異分母的分式加減法的運(yùn)算,必須轉(zhuǎn)化為同分母的分式加減法,然后按同分母的分式加減法的法則計(jì)算,轉(zhuǎn)化的關(guān)鍵是通分,通分的關(guān)鍵是正確確定幾個(gè)分式的最簡公分母,確定最簡公分母的一般步驟:(1)取各分母系數(shù)

22、的最小公倍數(shù);(2)所出現(xiàn)的字母(或含字母的式子)為底的冪的因式都要?。唬?)相同字母(或含字母的式子)的冪的因式取指數(shù)最大的.在求出最簡公分母后,還要確定分子、分母應(yīng)乘的因式,這個(gè)因式就是最簡公分母除以原分母所得的商.異分母的分式加減法的一般步驟:(1)通分,將異分母的分式化成同分母的分式;(2)寫成“分母不便,分子相加減”的形式;(3)分子去括號(hào),合并同類項(xiàng);(4)分子、分母約分,將結(jié)果化成最簡分式或整式.三、例、習(xí)題的意圖分析1 p18問題3是一個(gè)工程問題,題意比較簡單,只是用字母n天來表示甲工程隊(duì)完成一項(xiàng)工程的時(shí)間,乙工程隊(duì)完成這一項(xiàng)工程的時(shí)間可表示為n+3天,兩隊(duì)共同工作一天完成這項(xiàng)

23、工程的.這樣引出分式的加減法的實(shí)際背景,問題4的目的與問題3一樣,從上面兩個(gè)問題可知,在討論實(shí)際問題的數(shù)量關(guān)系時(shí),需要進(jìn)行分式的加減法運(yùn)算.2 p19觀察是為了讓學(xué)生回憶分?jǐn)?shù)的加減法法則,類比分?jǐn)?shù)的加減法,分式的加減法的實(shí)質(zhì)與分?jǐn)?shù)的加減法相同,讓學(xué)生自己說出分式的加減法法則.3p20例6計(jì)算應(yīng)用分式的加減法法則.第(1)題是同分母的分式減法的運(yùn)算,第二個(gè)分式的分子式個(gè)單項(xiàng)式,不涉及到分子變號(hào)的問題,比較簡單,所以要補(bǔ)充分子是多項(xiàng)式的例題,教師要強(qiáng)調(diào)分子相減時(shí)第二個(gè)多項(xiàng)式注意變號(hào);第(2)題是異分母的分式加法的運(yùn)算,最簡公分母就是兩個(gè)分母的乘積,沒有涉及分母要因式分解的題型.例6的練習(xí)的題量明顯

24、不足,題型也過于簡單,教師應(yīng)適當(dāng)補(bǔ)充一些題,以供學(xué)生練習(xí),鞏固分式的加減法法則.(4)p21例7是一道物理的電路題,學(xué)生首先要有并聯(lián)電路總電阻r與各支路電阻r1, r2, , rn的關(guān)系為.若知道這個(gè)公式,就比較容易地用含有r1的式子表示r2,列出,下面的計(jì)算就是異分母的分式加法的運(yùn)算了,得到,再利用倒數(shù)的概念得到r的結(jié)果.這道題的數(shù)學(xué)計(jì)算并不難,但是物理的知識(shí)若不熟悉,就為數(shù)學(xué)計(jì)算設(shè)置了難點(diǎn).鑒于以上分析,教師在講這道題時(shí)要根據(jù)學(xué)生的物理知識(shí)掌握的情況,以及學(xué)生的具體掌握異分母的分式加法的運(yùn)算的情況,可以考慮是否放在例8之后講. 四、課堂堂引入1.出示p18問題3、問題4,教師引導(dǎo)學(xué)生列出答

25、案.引語:從上面兩個(gè)問題可知,在討論實(shí)際問題的數(shù)量關(guān)系時(shí),需要進(jìn)行分式的加減法運(yùn)算.2下面我們先觀察分?jǐn)?shù)的加減法運(yùn)算,請你說出分?jǐn)?shù)的加減法運(yùn)算的法則嗎?3. 分式的加減法的實(shí)質(zhì)與分?jǐn)?shù)的加減法相同,你能說出分式的加減法法則?4請同學(xué)們說出的最簡公分母是什么?你能說出最簡公分母的確定方法嗎?五、例題講解(p20)例6.計(jì)算分析 第(1)題是同分母的分式減法的運(yùn)算,分母不變,只把分子相減,第二個(gè)分式的分子式個(gè)單項(xiàng)式,不涉及到分子是多項(xiàng)式時(shí),第二個(gè)多項(xiàng)式要變號(hào)的問題,比較簡單;第(2)題是異分母的分式加法的運(yùn)算,最簡公分母就是兩個(gè)分母的乘積.(補(bǔ)充)例.計(jì)算(1)分析 第(1)題是同分母的分式加減法的

26、運(yùn)算,強(qiáng)調(diào)分子為多項(xiàng)式時(shí),應(yīng)把多項(xiàng)事看作一個(gè)整體加上括號(hào)參加運(yùn)算,結(jié)果也要約分化成最簡分式.解:=(2)分析 第(2)題是異分母的分式加減法的運(yùn)算,先把分母進(jìn)行因式分解,再確定最簡公分母,進(jìn)行通分,結(jié)果要化為最簡分式.解:=六、隨堂練習(xí)計(jì)算(1) (2)(3) (4)七、課后練習(xí)計(jì)算(1) (2) (3) (4) 八、答案:四.(1) (2) (3) (4)1五.(1) (2) (3)1 (4)1622分式的加減(二)一、教學(xué)目標(biāo):明確分式混合運(yùn)算的順序,熟練地進(jìn)行分式的混合運(yùn)算.二、重點(diǎn)、難點(diǎn)1重點(diǎn):熟練地進(jìn)行分式的混合運(yùn)算.2難點(diǎn):熟練地進(jìn)行分式的混合運(yùn)算.3認(rèn)知難點(diǎn)與突破方法教師強(qiáng)調(diào)進(jìn)行

27、分式混合運(yùn)算時(shí),要注意運(yùn)算順序,在沒有括號(hào)的情況下,按從左到右的方向,先乘方,再乘除,然后加減. 有括號(hào)要按先小括號(hào),再中括號(hào),最后大括號(hào)的順序.混合運(yùn)算后的結(jié)果分子、分母要進(jìn)行約分,注意最后的結(jié)果要是最簡分式或整式.分子或分母的系數(shù)是負(fù)數(shù)時(shí),要把“-”號(hào)提到分式本身的前面.三、例、習(xí)題的意圖分析1 p21例8是分式的混合運(yùn)算. 分式的混合運(yùn)算需要注意運(yùn)算順序,式與數(shù)有相同的混合運(yùn)算順序:先乘方,再乘除,然后加減,最后結(jié)果分子、分母要進(jìn)行約分,注意最后的結(jié)果要是最簡分式或整式.例8只有一道題,訓(xùn)練的力度不夠,所以應(yīng)補(bǔ)充一些練習(xí)題,使學(xué)生熟練掌握分式的混合運(yùn)算.2 p22頁練習(xí)1:寫出第18頁問

28、題3和問題4的計(jì)算結(jié)果.這道題與第一節(jié)課相呼應(yīng),也解決了本節(jié)引言中所列分式的計(jì)算,完整地解決了應(yīng)用問題. 四、課堂引入1說出分?jǐn)?shù)混合運(yùn)算的順序.2教師指出分?jǐn)?shù)的混合運(yùn)算與分式的混合運(yùn)算的順序相同.五、例題講解(p21)例8.計(jì)算分析 這道題是分式的混合運(yùn)算,要注意運(yùn)算順序,式與數(shù)有相同的混合運(yùn)算順序:先乘方,再乘除,然后加減,最后結(jié)果分子、分母要進(jìn)行約分,注意運(yùn)算的結(jié)果要是最簡分式.(補(bǔ)充)計(jì)算(1)分析 這道題先做括號(hào)里的減法,再把除法轉(zhuǎn)化成乘法,把分母的“-”號(hào)提到分式本身的前邊.解: =(2)分析 這道題先做乘除,再做減法,把分子的“-”號(hào)提到分式本身的前邊.解:=六、隨堂練習(xí)計(jì)算(1)

29、 (2)(3) 七、課后練習(xí)1計(jì)算(1) (2) (3) 2計(jì)算,并求出當(dāng)-1的值.八、答案:六、(1)2x (2) (3)3 七、1.(1) (2) (3) 2.,-1623整數(shù)指數(shù)冪一、教學(xué)目標(biāo):1知道負(fù)整數(shù)指數(shù)冪=(a0,n是正整數(shù)).2掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì).3會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù).二、重點(diǎn)、難點(diǎn)1重點(diǎn):掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì).2難點(diǎn):會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù).3認(rèn)知難點(diǎn)與突破方法復(fù)習(xí)已學(xué)過的正整數(shù)指數(shù)冪的運(yùn)算性質(zhì):(1)同底數(shù)的冪的乘法:(m,n是正整數(shù));(2)冪的乘方:(m,n是正整數(shù));(3)積的乘方:(n是正整數(shù));(4)同底數(shù)的冪的除法:( a0,m,n是正

30、整數(shù),mn);(5)商的乘方:(n是正整數(shù));0指數(shù)冪,即當(dāng)a0時(shí),. 在學(xué)習(xí)有理數(shù)時(shí),曾經(jīng)介紹過1納米=10-9米,即1納米=米.此處出現(xiàn)了負(fù)指數(shù)冪,也出現(xiàn)了它的另外一種形式是正指數(shù)的倒數(shù)形式,但是這只是一種簡單的介紹知識(shí),而沒有講負(fù)指數(shù)冪的運(yùn)算法則.學(xué)生在已經(jīng)回憶起以上知識(shí)的基礎(chǔ)上,一方面由分式的除法約分可知,當(dāng)a0時(shí),=;另一方面,若把正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)(a0,m,n是正整數(shù),mn)中的mn這個(gè)條件去掉,那么=.于是得到=(a0),就規(guī)定負(fù)整數(shù)指數(shù)冪的運(yùn)算性質(zhì):當(dāng)n是正整數(shù)時(shí),=(a0),也就是把的適用范圍擴(kuò)大了,這個(gè)運(yùn)算性質(zhì)適用于m、n可以是全體整數(shù).三、例、習(xí)題的意圖分析1 p2

31、3思考提出問題,引出本節(jié)課的主要內(nèi)容負(fù)整數(shù)指數(shù)冪的運(yùn)算性質(zhì).2 p24觀察是為了引出同底數(shù)的冪的乘法:,這條性質(zhì)適用于m,n是任意整數(shù)的結(jié)論,說明正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)具有延續(xù)性.其它的正整數(shù)指數(shù)冪的運(yùn)算性質(zhì),在整數(shù)范圍里也都適用.3 p24例9計(jì)算是應(yīng)用推廣后的整數(shù)指數(shù)冪的運(yùn)算性質(zhì),教師不要因?yàn)檫@部分知識(shí)已經(jīng)講過,就認(rèn)為學(xué)生已經(jīng)掌握,要注意學(xué)生計(jì)算時(shí)的問題,及時(shí)矯正,以達(dá)到學(xué)生掌握整數(shù)指數(shù)冪的運(yùn)算的教學(xué)目的.4 p25例10判斷下列等式是否正確?是為了類比負(fù)數(shù)的引入后使減法轉(zhuǎn)化為加法,而得到負(fù)指數(shù)冪的引入可以使除法轉(zhuǎn)化為乘法這個(gè)結(jié)論,從而使分式的運(yùn)算與整式的運(yùn)算統(tǒng)一起來.5p25最后一段是介

32、紹會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù). 用科學(xué)計(jì)算法表示小于1的數(shù),運(yùn)用了負(fù)整數(shù)指數(shù)冪的知識(shí). 用科學(xué)計(jì)數(shù)法不僅可以表示小于1的正數(shù),也可以表示一個(gè)負(fù)數(shù).6p26思考提出問題,讓學(xué)生思考用負(fù)整數(shù)指數(shù)冪來表示小于1的數(shù),從而歸納出:對于一個(gè)小于1的數(shù),如果小數(shù)點(diǎn)后至第一個(gè)非0數(shù)字前有幾個(gè)0,用科學(xué)計(jì)數(shù)法表示這個(gè)數(shù)時(shí),10的指數(shù)就是負(fù)幾.7p26例11是一個(gè)介紹納米的應(yīng)用題,使學(xué)生做過這道題后對納米有一個(gè)新的認(rèn)識(shí).更主要的是應(yīng)用用科學(xué)計(jì)數(shù)法表示小于1的數(shù).四、課堂引入1回憶正整數(shù)指數(shù)冪的運(yùn)算性質(zhì):(1)同底數(shù)的冪的乘法:(m,n是正整數(shù));(2)冪的乘方:(m,n是正整數(shù));(3)積的乘方:(n是正整數(shù)

33、);(4)同底數(shù)的冪的除法:( a0,m,n是正整數(shù),mn);(5)商的乘方:(n是正整數(shù));2回憶0指數(shù)冪的規(guī)定,即當(dāng)a0時(shí),.3你還記得1納米=10-9米,即1納米=米嗎?4計(jì)算當(dāng)a0時(shí),=,再假設(shè)正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)(a0,m,n是正整數(shù),mn)中的mn這個(gè)條件去掉,那么=.于是得到=(a0),就規(guī)定負(fù)整數(shù)指數(shù)冪的運(yùn)算性質(zhì):當(dāng)n是正整數(shù)時(shí),=(a0).五、例題講解(p24)例9.計(jì)算分析 是應(yīng)用推廣后的整數(shù)指數(shù)冪的運(yùn)算性質(zhì)進(jìn)行計(jì)算,與用正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)進(jìn)行計(jì)算一樣,但計(jì)算結(jié)果有負(fù)指數(shù)冪時(shí),要寫成分式形式.(p25)例10. 判斷下列等式是否正確? 分析 類比負(fù)數(shù)的引入后使減法轉(zhuǎn)化

34、為加法,而得到負(fù)指數(shù)冪的引入可以使除法轉(zhuǎn)化為乘法這個(gè)結(jié)論,從而使分式的運(yùn)算與整式的運(yùn)算統(tǒng)一起來,然后再判斷下列等式是否正確.(p26)例11.分析 是一個(gè)介紹納米的應(yīng)用題,是應(yīng)用科學(xué)計(jì)數(shù)法表示小于1的數(shù).六、隨堂練習(xí)1.填空(1)-22= (2)(-2)2= (3)(-2) 0= (4)20= ( 5)2 -3= ( 6)(-2) -3= 2.計(jì)算(1) (x3y-2)2 (2)x2y-2 ·(x-2y)3 (3)(3x2y-2) 2 ÷(x-2y)3七、課后練習(xí)1. 用科學(xué)計(jì)數(shù)法表示下列各數(shù):0000 04, -0. 034, 0.000 000 45, 0. 003 0

35、092.計(jì)算(1) (3×10-8)×(4×103) (2) (2×10-3)2÷(10-3)3八、答案: 六、1.(1)-4 (2)4 (3)1 (4)1(5) (6) 2.(1) (2) (3) 七、1.(1) 4×10-5 (2) 3.4×10-2 (3)4.5×10-7 (4)3.009×10-3 2.(1) 1.2×10-5 (2)4×103 163分式方程(一)一、教學(xué)目標(biāo):1了解分式方程的概念, 和產(chǎn)生增根的原因.2掌握分式方程的解法,會(huì)解可化為一元一次方程的分式方程,會(huì)

36、檢驗(yàn)一個(gè)數(shù)是不是原方程的增根.二、重點(diǎn)、難點(diǎn)1重點(diǎn):會(huì)解可化為一元一次方程的分式方程,會(huì)檢驗(yàn)一個(gè)數(shù)是不是原方程的增根.2難點(diǎn):會(huì)解可化為一元一次方程的分式方程,會(huì)檢驗(yàn)一個(gè)數(shù)是不是原方程的增根. 3認(rèn)知難點(diǎn)與突破方法 解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時(shí)應(yīng)注意重新舊知識(shí)的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時(shí)要適當(dāng)復(fù)習(xí)一元一次方程的解法。至于解分式方程時(shí)產(chǎn)生增根的原因只讓學(xué)生了解就可以了,重要的是應(yīng)讓學(xué)生掌握驗(yàn)根的方法.要使學(xué)生掌握解分式方程的基本思路是將分式方程轉(zhuǎn)化整式方程,具體的方法是“去分母”,即方程兩邊統(tǒng)稱最簡公分母.要讓

37、學(xué)生掌握解分式方程的一般步驟:三、例、習(xí)題的意圖分析1 p31思考提出問題,引發(fā)學(xué)生的思考,從而引出解分式方程的解法以及產(chǎn)生增根的原因.2p32的歸納明確地總結(jié)了解分式方程的基本思路和做法.3 p33思考提出問題,為什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析產(chǎn)生增根的原因,及p33的歸納出檢驗(yàn)增根的方法. 4 p34討論提出p33的歸納出檢驗(yàn)增根的方法的理論根據(jù)是什么?5 教材p38習(xí)題第2題是含有字母系數(shù)的分式方程,對于學(xué)有余力的學(xué)生,教師可以點(diǎn)撥一下解題的思路與解數(shù)字系數(shù)的方程相似,只是在系數(shù)化1時(shí),要考慮字

38、母系數(shù)不為0,才能除以這個(gè)系數(shù). 這種方程的解必須驗(yàn)根.四、課堂引入1回憶一元一次方程的解法,并且解方程2提出本章引言的問題:一艘輪船在靜水中的最大航速為20千米/時(shí),它沿江以最大航速順流航行100千米所用時(shí)間,與以最大航速逆流航行60千米所用時(shí)間相等,江水的流速為多少?分析:設(shè)江水的流速為v千米/時(shí),根據(jù)“兩次航行所用時(shí)間相同”這一等量關(guān)系,得到方程.像這樣分母中含未知數(shù)的方程叫做分式方程.五、例題講解(p34)例1.解方程分析找對最簡公分母x(x-3),方程兩邊同乘x(x-3),把分式方程轉(zhuǎn)化為整式方程,整式方程的解必須驗(yàn)根這道題還有解法二:利用比例的性質(zhì)“內(nèi)項(xiàng)積等于外項(xiàng)積”,這樣做也比較

39、簡便.(p34)例2.解方程分析找對最簡公分母(x-1)(x+2),方程兩邊同乘(x-1)(x+2)時(shí),學(xué)生容易把整數(shù)1漏乘最簡公分母(x-1)(x+2),整式方程的解必須驗(yàn)根.六、隨堂練習(xí)解方程(1) (2)(3) (4)七、課后練習(xí)1解方程 (1) (2) (3) (4) 2x為何值時(shí),代數(shù)式的值等于2?八、答案:六、(1)x=18 (2)原方程無解 (3)x=1 (4)x=七、1 (1) x=3 (2) x=3 (3)原方程無解 (4)x=1 2. x=163分式方程(二)一、教學(xué)目標(biāo):1會(huì)分析題意找出等量關(guān)系.2會(huì)列出可化為一元一次方程的分式方程解決實(shí)際問題.二、重點(diǎn)、難點(diǎn)1重點(diǎn):利用

40、分式方程組解決實(shí)際問題.2難點(diǎn):列分式方程表示實(shí)際問題中的等量關(guān)系.3認(rèn)知難點(diǎn)與突破方法設(shè)未知數(shù)、列方程是本章中用數(shù)學(xué)模型表示和解決實(shí)際問題的關(guān)鍵步驟,正確地理解問題情境,分析其中的等量關(guān)系是設(shè)未知數(shù)、列方程的基礎(chǔ). 可以多角度思考,借助圖形、表格、式子等進(jìn)行分析,尋找等量關(guān)系,解分式方程應(yīng)用題必須雙檢驗(yàn):(1)檢驗(yàn)方程的解是否是原方程的解;(2)檢驗(yàn)方程的解是否符合題意.三、例、習(xí)題的意圖分析本節(jié)的p35例3不同于舊教材的應(yīng)用題有兩點(diǎn):(1)是一道工程問題應(yīng)用題,它的問題是甲乙兩個(gè)施工隊(duì)哪一個(gè)隊(duì)的施工速度快?這與過去直接問甲隊(duì)單獨(dú)干多少天完成或乙隊(duì)單獨(dú)干多少天完成有所不同,需要學(xué)生根據(jù)題意,

41、尋找未知數(shù),然后根據(jù)題意找出問題中的等量關(guān)系列方程.求得方程的解除了要檢驗(yàn)外,還要比較甲乙兩個(gè)施工隊(duì)哪一個(gè)隊(duì)的施工速度快,才能完成解題的全過程(2)教材的分析是填空的形式,為學(xué)生分析題意、設(shè)未知數(shù)搭好了平臺(tái),有助于學(xué)生找出題目中等量關(guān)系,列出方程.p36例4是一道行程問題的應(yīng)用題也與舊教材的這類題有所不同(1)本題中涉及到的列車平均提速v千米/時(shí),提速前行駛的路程為s千米, 完成. 用字母表示已知數(shù)(量)在過去的例題里并不多見,題目的難度也增加了;(2)例題中的分析用填空的形式提示學(xué)生用已知量v、s和未知數(shù)x,表示提速前列車行駛s千米所用的時(shí)間,提速后列車的平均速度設(shè)為未知數(shù)x千米/時(shí),以及提

42、速后列車行駛(x+50)千米所用的時(shí)間.這兩道例題都設(shè)置了帶有探究性的分析,應(yīng)注意鼓勵(lì)學(xué)生積極探究,當(dāng)學(xué)生在探究過程中遇到困難時(shí),教師應(yīng)啟發(fā)誘導(dǎo),讓學(xué)生經(jīng)過自己的努力,在克服困難后體會(huì)如何探究,教師不要替代他們思考,不要過早給出答案.教材中為學(xué)生自己動(dòng)手、動(dòng)腦解題搭建了一些提示的平臺(tái),給了設(shè)未知數(shù)、解題思路和解題格式,但教學(xué)目標(biāo)要求學(xué)生還是要獨(dú)立地分析、解決實(shí)際問題,所以教師還要給學(xué)生一些問題,讓學(xué)生發(fā)揮他們的才能,找到解題的思路,能夠獨(dú)立地完成任務(wù).特別是題目中的數(shù)量關(guān)系清晰,教師就放手讓學(xué)生做,以提高學(xué)生分析問解決問題的能力.四、例題講解p35例3分析:本題是一道工程問題應(yīng)用題,基本關(guān)系是

43、:工作量=工作效率×工作時(shí)間.這題沒有具體的工作量,工作量虛擬為1,工作的時(shí)間單位為“月”.等量關(guān)系是:甲隊(duì)單獨(dú)做的工作量+兩隊(duì)共同做的工作量=1p36例4分析:是一道行程問題的應(yīng)用題, 基本關(guān)系是:速度=.這題用字母表示已知數(shù)(量).等量關(guān)系是:提速前所用的時(shí)間=提速后所用的時(shí)間五、隨堂練習(xí)1. 學(xué)校要舉行跳繩比賽,同學(xué)們都積極練習(xí).甲同學(xué)跳180個(gè)所用的時(shí)間,乙同學(xué)可以跳240個(gè);又已知甲每分鐘比乙少跳5個(gè),求每人每分鐘各跳多少個(gè).2. 一項(xiàng)工程要在限期內(nèi)完成.如果第一組單獨(dú)做,恰好按規(guī)定日期完成;如果第二組單獨(dú)做,需要超過規(guī)定日期4天才能完成,如果兩組合作3天后,剩下的工程由第

44、二組單獨(dú)做,正好在規(guī)定日期內(nèi)完成,問規(guī)定日期是多少天?3. 甲、乙兩地相距19千米,某人從甲地去乙地,先步行7千米,然后改騎自行車,共用了2小時(shí)到達(dá)乙地,已知這個(gè)人騎自行車的速度是步行速度的4倍,求步行的速度和騎自行車的速度.六、課后練習(xí)1某學(xué)校學(xué)生進(jìn)行急行軍訓(xùn)練,預(yù)計(jì)行60千米的路程在下午5時(shí)到達(dá),后來由于把速度加快 ,結(jié)果于下午4時(shí)到達(dá),求原計(jì)劃行軍的速度。2甲、乙兩個(gè)工程隊(duì)共同完成一項(xiàng)工程,乙隊(duì)先單獨(dú)做1天后,再由兩隊(duì)合作2天就完成了全部工程,已知甲隊(duì)單獨(dú)完成工程所需的天數(shù)是乙隊(duì)單獨(dú)完成所需天數(shù)的,求甲、乙兩隊(duì)單獨(dú)完成各需多少天?3甲容器中有15%的鹽水30升,乙容器中有18%的鹽水20

45、升,如果向兩個(gè)容器個(gè)加入等量水,使它們的濃度相等,那么加入的水是多少升?七、答案:五、1. 15個(gè),20個(gè) 2. 12天 3. 5千米/時(shí),20千米/時(shí) 六、1. 10千米/時(shí) 2. 4天,6天 3. 20升第十七章 反比例函數(shù)1711反比例函數(shù)的意義一、教學(xué)目標(biāo)1使學(xué)生理解并掌握反比例函數(shù)的概念2能判斷一個(gè)給定的函數(shù)是否為反比例函數(shù),并會(huì)用待定系數(shù)法求函數(shù)解析式3能根據(jù)實(shí)際問題中的條件確定反比例函數(shù)的解析式,體會(huì)函數(shù)的模型思想二、重、難點(diǎn)1重點(diǎn):理解反比例函數(shù)的概念,能根據(jù)已知條件寫出函數(shù)解析式2難點(diǎn):理解反比例函數(shù)的概念3難點(diǎn)的突破方法:(1)在引入反比例函數(shù)的概念時(shí),可適當(dāng)復(fù)習(xí)一下第11

46、章的正比例函數(shù)、一次函數(shù)等相關(guān)知識(shí),這樣以舊帶新,相互對比,能加深對反比例函數(shù)概念的理解(2)注意引導(dǎo)學(xué)生對反比例函數(shù)概念的理解,看形式,等號(hào)左邊是函數(shù)y,等號(hào)右邊是一個(gè)分式,自變量x在分母上,且x的指數(shù)是1,分子是不為0的常數(shù)k;看自變量x的取值范圍,由于x在分母上,故取x0的一切實(shí)數(shù);看函數(shù)y的取值范圍,因?yàn)閗0,且x0,所以函數(shù)值y也不可能為0。講解時(shí)可對照正比例函數(shù)ykx(k0),比較二者解析式的相同點(diǎn)和不同點(diǎn)。(3)(k0)還可以寫成(k0)或xyk(k0)的形式三、例題的意圖分析教材第46頁的思考題是為引入反比例函數(shù)的概念而設(shè)置的,目的是讓學(xué)生從實(shí)際問題出發(fā),探索其中的數(shù)量關(guān)系和變

47、化規(guī)律,通過觀察、討論、歸納,最后得出反比例函數(shù)的概念,體會(huì)函數(shù)的模型思想。教材第47頁的例1是一道用待定系數(shù)法求反比例函數(shù)解析式的題,此題的目的一是要加深學(xué)生對反比例函數(shù)概念的理解,掌握求函數(shù)解析式的方法;二是讓學(xué)生進(jìn)一步體會(huì)函數(shù)所蘊(yùn)含的“變化與對應(yīng)”的思想,特別是函數(shù)與自變量之間的單值對應(yīng)關(guān)系。補(bǔ)充例1、例2都是常見的題型,能幫助學(xué)生更好地理解反比例函數(shù)的概念。補(bǔ)充例3是一道綜合題,此題是用待定系數(shù)法確定由兩個(gè)函數(shù)組合而成的新的函數(shù)關(guān)系式,有一定難度,但能提高學(xué)生分析、解決問題的能力。四、課堂引入1回憶一下什么是正比例函數(shù)、一次函數(shù)?它們的一般形式是怎樣的?2體育課上,老師測試了百米賽跑,

48、那么,時(shí)間與平均速度的關(guān)系是怎樣的?五、例習(xí)題分析例1見教材p47分析:因?yàn)閥是x的反比例函數(shù),所以先設(shè),再把x2和y6代入上式求出常數(shù)k,即利用了待定系數(shù)法確定函數(shù)解析式。例1(補(bǔ)充)下列等式中,哪些是反比例函數(shù)(1) (2) (3)xy21 (4) (5)(6) (7)yx4分析:根據(jù)反比例函數(shù)的定義,關(guān)鍵看上面各式能否改寫成(k為常數(shù),k0)的形式,這里(1)、(7)是整式,(4)的分母不是只單獨(dú)含x,(6)改寫后是,分子不是常數(shù),只有(2)、(3)、(5)能寫成定義的形式例2(補(bǔ)充)當(dāng)m取什么值時(shí),函數(shù)是反比例函數(shù)?分析:反比例函數(shù)(k0)的另一種表達(dá)式是(k0),后一種寫法中x的次數(shù)

49、是1,因此m的取值必須滿足兩個(gè)條件,即m20且3m21,特別注意不要遺漏k0這一條件,也要防止出現(xiàn)3m21的錯(cuò)誤。解得m2例3(補(bǔ)充)已知函數(shù)yy1y2,y1與x成正比例,y2與x成反比例,且當(dāng)x1時(shí),y4;當(dāng)x2時(shí),y5(1) 求y與x的函數(shù)關(guān)系式(2) 當(dāng)x2時(shí),求函數(shù)y的值分析:此題函數(shù)y是由y1和y2兩個(gè)函數(shù)組成的,要用待定系數(shù)法來解答,先根據(jù)題意分別設(shè)出y1、 y2與x的函數(shù)關(guān)系式,再代入數(shù)值,通過解方程或方程組求出比例系數(shù)的值。這里要注意y1與x和y2與x的函數(shù)關(guān)系中的比例系數(shù)不一定相同,故不能都設(shè)為k,要用不同的字母表示。略解:設(shè)y1k1x(k10),(k20),則,代入數(shù)值求得

50、k12,k22,則,當(dāng)x2時(shí),y5六、隨堂練習(xí)1蘋果每千克x元,花10元錢可買y千克的蘋果,則y與x之間的函數(shù)關(guān)系式為 2若函數(shù)是反比例函數(shù),則m的取值是 3矩形的面積為4,一條邊的長為x,另一條邊的長為y,則y與x的函數(shù)解析式為 4已知y與x成反比例,且當(dāng)x2時(shí),y3,則y與x之間的函數(shù)關(guān)系式是 ,當(dāng)x3時(shí),y 5函數(shù)中自變量x的取值范圍是 七、課后練習(xí)已知函數(shù)yy1y2,y1與x1成正比例,y2與x成反比例,且當(dāng)x1時(shí),y0;當(dāng)x4時(shí),y9,求當(dāng)x1時(shí)y的值答案:y41712反比例函數(shù)的圖象和性質(zhì)(1)一、教學(xué)目標(biāo)1會(huì)用描點(diǎn)法畫反比例函數(shù)的圖象2結(jié)合圖象分析并掌握反比例函數(shù)的性質(zhì)3體會(huì)函數(shù)

51、的三種表示方法,領(lǐng)會(huì)數(shù)形結(jié)合的思想方法二、重點(diǎn)、難點(diǎn)1重點(diǎn):理解并掌握反比例函數(shù)的圖象和性質(zhì)2難點(diǎn):正確畫出圖象,通過觀察、分析,歸納出反比例函數(shù)的性質(zhì)3難點(diǎn)的突破方法:畫反比例函數(shù)圖象前,應(yīng)先讓學(xué)生回憶一下畫函數(shù)圖象的基本步驟,即:列表、描點(diǎn)、連線,其中列表取值很關(guān)鍵。反比例函數(shù)(k0)自變量的取值范圍是x0,所以取值時(shí)應(yīng)對稱式地選取正數(shù)和負(fù)數(shù)各一半,并且互為相反數(shù),通常取的數(shù)值越多,畫出的圖象越精確。連線時(shí)要告訴學(xué)生用平滑的曲線連接,不能用折線連接。教學(xué)時(shí),老師要帶著學(xué)生一起畫,注意引導(dǎo),及時(shí)糾錯(cuò)。在探究反比例函數(shù)的性質(zhì)時(shí),可結(jié)合正比例函數(shù)ykx(k0)的圖象和性質(zhì),來幫助學(xué)生觀察、分析及歸納,通過對比,能使學(xué)生更好地理解和掌握所學(xué)的內(nèi)容。這里要強(qiáng)調(diào)一下,反比例函數(shù)的圖象位置和增減性是由反比例系數(shù)k的符號(hào)決定的;反之,雙曲線的位置和函數(shù)性質(zhì)也能推出k的符號(hào),注意讓學(xué)生體會(huì)數(shù)形結(jié)合的思想方法。三、例題的意圖分析教材第48頁的例2是讓學(xué)生經(jīng)歷用描點(diǎn)法畫反比例函數(shù)圖象的過程,一方面能進(jìn)一步熟悉作函數(shù)圖象的方法,提高基本技能;另一方面可以加深學(xué)生對反比例函數(shù)圖象的認(rèn)識(shí),了解函數(shù)的變化規(guī)律,從而為探究函數(shù)的性質(zhì)作準(zhǔn)備。補(bǔ)充例1的目的一是復(fù)習(xí)鞏固反比例函數(shù)的定義,二是通過對反比例函數(shù)性質(zhì)的簡單應(yīng)用,使學(xué)生進(jìn)一步理解反比例函數(shù)的圖象特征及性質(zhì)。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論