版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、初中數(shù)學(xué)概念、公式歸納匯總1 過兩點有且只有一條直線2 兩點之間線段最短3 同角或等角的補角相等4 同角或等角的余角相等5 過一點有且只有一條直線和已知直線垂直6 直線外一點與直線上各點連接的所有線段中,垂線段最短7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行9 同位角相等,兩直線平行10 內(nèi)錯角相等,兩直線平行11 同旁內(nèi)角互補,兩直線平行12 兩直線平行,同位角相等13 兩直線平行,內(nèi)錯角相等14 兩直線平行,同旁內(nèi)角互補15 定理 三角形兩邊的和大于第三邊16 推論 三角形兩邊的差小于第三邊17 三角形內(nèi)角和定理 三角
2、形三個內(nèi)角的和等于 180°18 推論 1 直角三角形的兩個銳角互余19 推論 2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和20 推論 3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角21 全等三角形的對應(yīng)邊、對應(yīng)角相等22 邊角邊公理 (SAS) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等23 角邊角公理 ( ASA) 有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等24 推論 (AAS) 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等25 邊邊邊公理 (SSS) 有三邊對應(yīng)相等的兩個三角形全等26 斜邊、直角邊公理 (HL) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等27 定理
3、 1 在角的平分線上的點到這個角的兩邊的距離相等28 定理 2 到一個角的兩邊的距離相同的點,在這個角的平分線上29 角的平分線是到角的兩邊距離相等的所有點的集合30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 ( 即等邊對等角)31 推論 1 等腰三角形頂角的平分線平分底邊并且垂直于底邊32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33 推論 3 等邊三角形的各角都相等,并且每一個角都等于 60°34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)35 推論 1 三個角都相等的三角形是等邊三角形36 推論 2 有一個角
4、等于 60° 的等腰三角形是等邊三角形37 在直角三角形中,如果一個銳角等于 30° 那么它所對的直角邊等于斜邊的一半38 直角三角形斜邊上的中線等于斜邊上的一半39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42 定理 1 關(guān)于某條直線對稱的兩個圖形是全等形43 定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線44 定理 3 兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上45 逆
5、定理 如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱46 勾股定理 直角三角形兩直角邊 a 、 b 的平方和、等于斜邊 c 的平方,即 a2+b2=c247 勾股定理的逆定理 如果三角形的三邊長 a 、 b 、 c 有關(guān)系 a2+b2=c2 ,那么這個三角形是直角三角形48 定理 四邊形的內(nèi)角和等于 360°49 四邊形的外角和等于 360°50 多邊形內(nèi)角和定理 n 邊形的內(nèi)角的和等于( n-2 ) ×180°51 推論 任意多邊的外角和等于 360°52 平行四邊形性質(zhì)定理 1 平行四邊形的對角相等53 平行四
6、邊形性質(zhì)定理 2 平行四邊形的對邊相等54 推論 夾在兩條平行線間的平行線段相等55 平行四邊形性質(zhì)定理 3 平行四邊形的對角線互相平分56 平行四邊形判定定理 1 兩組對角分別相等的四邊形是平行四邊形57 平行四邊形判定定理 2 兩組對邊分別相等的四邊形是平行四邊形58 平行四邊形判定定理 3 對角線互相平分的四邊形是平行四邊形59 平行四邊形判定定理 4 一組對邊平行相等的四邊形是平行四邊形60 矩形性質(zhì)定理 1 矩形的四個角都是直角61 矩形性質(zhì)定理 2 矩形的對角線相等62 矩形判定定理 1 有三個角是直角的四邊形是矩形63 矩形判定定理 2 對角線相等的平行四邊形是矩形64 菱形性質(zhì)
7、定理 1 菱形的四條邊都相等65 菱形性質(zhì)定理 2 菱形的對角線互相垂直,并且每一條對角線平分一組對角66 菱形面積 = 對角線乘積的一半,即 S= ( a×b ) ÷267 菱形判定定理 1 四邊都相等的四邊形是菱形68 菱形判定定理 2 對角線互相垂直的平行四邊形是菱形69 正方形性質(zhì)定理 1 正方形的四個角都是直角,四條邊都相等70 正方形性質(zhì)定理 2 正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角71 定理 1 關(guān)于中心對稱的兩個圖形是全等的72 定理 2 關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分73 逆定理 如果兩個圖
8、形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱74 等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等75 等腰梯形的兩條對角線相等76 等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形77 對角線相等的梯形是等腰梯形78 平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等79 推論 1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰80 推論 2 經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半82 梯形中位線定理 梯形的中位線平行于兩底,并且
9、等于兩底和的一半 L= ( a+b ) ÷2 S=L×h83 (1) 比例的基本性質(zhì) 如果 a:b=c:d, 那么 ad=bc, 如果 ad=bc, 那么 a:b=c:d84 (2) 合比性質(zhì) 如果 a b=c d, 那么 (a±b) b=(c±d) d85 (3) 等比性質(zhì) 如果 a b=c d=m n(b+d+n0), 那么 (a+c+m) (b+d+n)=a b86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應(yīng)線段成比例87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例88 定理 如果一條直線截三角形的
10、兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似91 相似三角形判定定理 1 兩角對應(yīng)相等,兩三角形相似( ASA )92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93 判定定理 2 兩邊對應(yīng)成比例且夾角相等,兩三角形相似( SAS )94 判定定理 3 三邊對應(yīng)成比例,兩三角形相似( SSS )95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形
11、的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似96 性質(zhì)定理 1 相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比97 性質(zhì)定理 2 相似三角形周長的比等于相似比98 性質(zhì)定理 3 相似三角形面積的比等于相似比的平方99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100 任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101 圓是定點的距離等于定長的點的集合102 圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合103 圓的外部可以看作是圓心的距離大于半徑的點的集合104 同圓或等圓的半徑相等105 到定點的距離等
12、于定長的點的軌跡,是以定點為圓心,定長為半徑的圓106 和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107 到已知角的兩邊距離相等的點的軌跡,是這個角的平分線108 到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109 定理 不在同一直線上的三點確定一個圓。110 垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧111 推論 1 平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧 弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧 平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112 推論 2 圓的兩條平行弦所夾的弧相等11
13、3 圓是以圓心為對稱中心的中心對稱圖形114 定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等115 推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等116 定理 一條弧所對的圓周角等于它所對的圓心角的一半117 推論 1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118 推論 2 半圓(或直徑)所對的圓周角是直角; 90° 的圓周角所對的弦是直徑119 推論 3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120 定理 圓的內(nèi)接四邊形的對角
14、互補,并且任何一個外角都等于它的內(nèi)對角121 直線 L 和 O 相交 d r 直線 L 和 O 相切 d=r 直線 L 和 O 相離 d r122 切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123 切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑124 推論 1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點125 推論 2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心126 切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角127 圓的外切四邊形的兩組對邊的和相等128 弦切角定理 弦切角等于它所夾的弧對的圓周角129 推論 如果兩個弦切角所夾的弧相
15、等,那么這兩個弦切角也相等130 相交弦定理 圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等131 推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項132 切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項133 推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等134 如果兩個圓相切,那么切點一定在連心線上135 兩圓外離 d R+r 兩圓外切 d=R+r 兩圓相交 R-r d R+r(R r) 兩圓內(nèi)切 d=R-r(R r) 兩圓內(nèi)含 d R-r(R r)136 定理 相交兩圓的連心線垂直平分兩圓
16、的公共弦137 定理 把圓分成 n(n3): 依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正 n 邊形 經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正 n 邊形138 定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓139 正 n 邊形的每個內(nèi)角都等于( n-2 ) ×180° n140 定理 正 n 邊形的半徑和邊心距把正 n 邊形分成 2n 個全等的直角三角形141 正 n 邊形的面積 Sn=pnrn 2 p 表示正 n 邊形的周長142 正三角形面積 3a 4 a 表示邊長143 如果在一個頂點周圍有 k 個正 n 邊形的角,由于這些角
17、的和應(yīng)為 360° ,因此 k×(n-2)180° n=360° 化為( n-2 ) (k-2)=4144 弧長計算公式: L=n 兀 R 180145 扇形面積公式: S 扇形 =n 兀 R2 360=LR 2146 內(nèi)公切線長 = d-(R-r) 外公切線長 = d-(R+r)實用工具 : 常用數(shù)學(xué)公式 公式分類 公式表達式乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式 |a+b|a|+|b| |a-b|a|+|b| |a|b<=>-bab|a
18、-b|a|-|b| -|a|a|a|一元二次方程的解 -b+(b2 -4ac)/ 2a -b-(b2 -4ac)/ 2a根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達定理判別式b2 -4ac=0 注:方程有兩個相等的實根b2 -4ac>0 注:方程有兩個不等的實根b2 -4ac<0 注:方程沒有實根,有共軛復(fù)數(shù)根 三角函數(shù)公式 兩角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAs
19、inBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan 2A=2tanA/(1-tan 2A) ctg 2A=(ctg 2A-1)/2ctgacos 2a=cos 2a-sin 2a=2cos 2a-1=1-2sin 2a半角公式sin(A/2)=(1-cosA)/2) sin(A/2)=-(1-cosA)/2)cos(A/2)=(1+cosA)/2) cos(A
20、/2)=-(1+cosA)/2)tan(A/2)=(1-cosA)/(1+cosA) tan(A/2)=-(1-cosA)/(1+cosA)ctg(A/2)=(1+cosA)/(1-cosA) ctg(A/2)=-(1+cosA)/(1-cosA)和差化積2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些數(shù)列前 n 項和1+2+3+4+5+6+7+8+9+n=n(n+1)/2 1+3+5+7+9+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)生自我評價集錦15篇
- 校園活動策劃書(集錦15篇)
- 端午節(jié)演講稿3分鐘(合集4篇)
- 銷售上半年工作總結(jié)15篇
- 旅游案例-彝人古鎮(zhèn)
- 長度單位手抄報6篇
- 人教版高一地理必修2同步習(xí)題及答案解析(全冊)
- 兒童樂園合同(2篇)
- 河南省安陽市林州第二職業(yè)高級中學(xué)高三語文聯(lián)考試卷含解析
- 2025年斗型布草車項目合作計劃書
- 外國文學(xué)名著導(dǎo)讀課件
- 2022年秋新教材高中語文第七單元第16課16.1赤壁賦16.2登泰山記課后集訓(xùn)部編版必修上冊
- 微波技術(shù)與天線劉學(xué)觀課后習(xí)題答案
- 水稻害蟲精選課件
- 危險化學(xué)品購買管理臺賬
- 最新VTE指南解讀(靜脈血栓栓塞癥的臨床護理指南解讀)
- 中學(xué)校本課程教材《生活中的化學(xué)》
- 污水處理站運行維護管理方案
- 農(nóng)村公路養(yǎng)護工程施工組織設(shè)計
- 個人如何開辦婚介公司,婚介公司經(jīng)營和管理
- 天津市歷年社會保險繳費基數(shù)、比例
評論
0/150
提交評論